Lifshitz Points in Ising Systems with Competing Interactions

Author(s):  
R. Liebmann
1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1031-C8-1032
Author(s):  
S. Coutinho ◽  
C. R. da Silva

1988 ◽  
Vol 49 (C8) ◽  
pp. C8-1251-C8-1252
Author(s):  
W. Brauneck ◽  
O. Jagodzinski ◽  
D. Wagner

Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1624
Author(s):  
Leonid Litinskii ◽  
Boris Kryzhanovsky

In the present paper, we examine Ising systems on d-dimensional hypercube lattices and solve an inverse problem where we have to determine interaction constants of an Ising connection matrix when we know a spectrum of its eigenvalues. In addition, we define restrictions allowing a random number sequence to be a connection matrix spectrum. We use the previously obtained analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary long-range interaction and supposing periodic boundary conditions.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 33
Author(s):  
R.I. Campeanu ◽  
Colm T. Whelan

Triple differential cross sections (TDCS) are presented for the electron and positron impact ionization of inert gas atoms in a range of energy sharing geometries where a number of significant few body effects compete to define the shape of the TDCS. Using both positrons and electrons as projectiles has opened up the possibility of performing complementary studies which could effectively isolate competing interactions that cannot be separately detected in an experiment with a single projectile. Results will be presented in kinematics where the electron impact ionization appears to be well understood and using the same kinematics positron cross sections will be presented. The kinematics are then varied in order to focus on the role of distortion, post collision interaction (pci), and interference effects.


1992 ◽  
Vol 06 (14) ◽  
pp. 2439-2469 ◽  
Author(s):  
P. SEN ◽  
B. K. CHAKRABARTI

The analytical and numerical (Monte Carlo and exact diagonalisation) estimates of phase diagrams of frustrated Ising models in transverse fields are discussed here. Specifically we discuss the Sherrington–Kirkpatrick model in transverse field and the Axial Next-Nearest Neighbour Ising (ANNNI) model in transverse field. The effects of quantum fluctuations (induced by the transverse field) on the ground and excited states of such systems with competing interactions (frustration) are also discussed. The results are compared to those available for other frustrated quantum systems.


Sign in / Sign up

Export Citation Format

Share Document