An Ultrastructural Study of Pulmonary Capillary Vessels in Blood Volume-Overloaded Rat

Author(s):  
Masato Sageshima ◽  
Koichi Kawamura ◽  
Kohei Toda ◽  
Hirotake Masuda ◽  
Takeshi Shozawa
1980 ◽  
Vol 303 (15) ◽  
pp. 842-845 ◽  
Author(s):  
G. V. R. K. Sharma ◽  
Virginia A. Burleson ◽  
Arthur A. Sasahara ◽  
Barbara Roggeveen ◽  
Nazarene Mondello ◽  
...  

1975 ◽  
Vol 39 (1) ◽  
pp. 47-53 ◽  
Author(s):  
J. A. Loeppky ◽  
U. C. Luft

To clarify the role of O2 stores in the fluctuations in VO2 observed with changing posture, O2 intake (Veo2) and pulmonary capillary O2 transfer (Vpco2) were calculated breath by breath with a box-balloon sprometer and mass spectrometer. Changes in O2 stores of the lungs (O2L) and blood (O2b) were computed assuming metabolic rate (Vco2) constant (O2L = Veo2 - Vpco2; O2b = Vpco2 - Vco2). Measurements were made before, during, and after passive tilt to 60 degrees and on return to recumbency after 10 min erect. From supine to upright O2L increased rapidly and O2b dropped slowly, creating a net deficit in Veo2 of 130 ml in 10 min. Return to supine caused rapid loss in O2L and gain in O2b with a net Veo2 excess of 117 ml. Shifts in O2b were 2.5 times greater but opposite to shifts in O2L. Changes in O2b result from shifts in blood volume and flow more than from changes in cardiac output. Refilling of O2b, matching loss while upright, caused transient hypoxia with significant hyperpnea.


1997 ◽  
Vol 82 (5) ◽  
pp. 1668-1676 ◽  
Author(s):  
George P. Topulos ◽  
Nina R. Lipsky ◽  
John L. Lehr ◽  
Rick A. Rogers ◽  
James P. Butler

Topulos, George P., Nina R. Lipsky, John L. Lehr, Rick A. Rogers, and James P. Butler. Fractional changes in lung capillary blood volume and oxygen saturation during the cardiac cycle in rabbits. J. Appl. Physiol. 82(5): 1668–1676, 1997.—Changes in local pulmonary capillary blood volume (Vc) and oxygen saturation (S) have been difficult to measure in live animals. By utilizing the differences in absorption of light at two wavelengths (650 and 800 nm), we estimated the fractional change in Vc and S during the course of the cardiac cycle in eight anesthetized, ventilated rabbits at low and high lung volumes. Observations were made of the pattern of diffusely backscattered light, from an ∼1-cm3 volume of lung illuminated with a point source placed on the pleural surface through a thoracotomy. At low lung volume, the fractional change in Vc was ∼13%, the change in S was ∼4.6%, and the mean S was close to 77%. The fluctuations in Vc and S lagged behind peak systemic blood pressure by about one-fifth and three-fifths of a cycle, respectively. At high lung volume, there were no important fluctuations in Vc or S, and the mean S was ∼82%. These results are consistent with fluctuations in pulmonary capillary pressure and gas exchange over the cardiac cycle, and with decreasing capillary compliance with increasing lung volume.


2020 ◽  
Vol 56 (6) ◽  
pp. 2000379
Author(s):  
Plamen Bokov ◽  
Priscilla Boizeau ◽  
Jade Pautrat ◽  
Florence Missud ◽  
Aissatou Ba ◽  
...  

2017 ◽  
Vol 122 (3) ◽  
pp. 460-469 ◽  
Author(s):  
Melissa M. Bouwsema ◽  
Vincent Tedjasaputra ◽  
Michael K. Stickland

Previous work suggests that women may exhibit a greater respiratory limitation in exercise compared with height-matched men. Diffusion capacity (DlCO) increases with incremental exercise, and the smaller lungs of women may limit membrane diffusing capacity (Dm) and pulmonary capillary blood volume (Vc) in response to the increased oxygen demand. We hypothesized that women would have lower DlCO, DlCO relative to cardiac output (DlCO/Q̇), Dm, Vc, and pulmonary transit time, secondary to lower Vc at peak exercise. Sixteen women (112 ± 12% predicted relative V̇o2peak) and sixteen men (118 ± 22% predicted relative V̇o2peak) were matched for height and weight. Hemoglobin-corrected diffusing capacity (DlCO), Vc, and Dm were determined via the multiple-[Formula: see text] DlCO technique at rest and during incremental exercise up to 90% of V̇o2peak. Both groups increased DlCO, Vc, and Dm with exercise intensity, but women had 20% lower DlCO ( P < 0.001), 18% lower Vc ( P = 0.002), and 22% lower Dm ( P < 0.001) compared with men across all workloads, and neither group exhibited a plateau in Vc. When expressed relative to alveolar volume (Va), the between-sex difference was eliminated. The drop in DlCO/Q̇ was proportionally less in women than men, and mean pulmonary transit time did not drop below 0.3 s in either group. Women demonstrate consistently lower DlCO, Vc, and Dm compared with height-matched men during exercise; however, these differences disappear with correction for lung size. These results suggest that after differences in lung volume are accounted for there is no intrinsic sex difference in the DlCO, Vc, or Dm response to exercise. NEW & NOTEWORTHY Women demonstrate lower diffusing capacity-to-cardiac output ratio (DlCO/Q̇), pulmonary capillary blood volume (Vc), and membrane diffusing capacity (Dm) compared with height-matched men during exercise. However, these differences disappear after correction for lung size. The drop in DlCO/Q̇ was proportionally less in women, and pulmonary transit time did not drop below 0.3 s in either group. After differences in lung volume are accounted for, there is no intrinsic sex difference in DlCO, Vc, or Dm response to exercise.


Sign in / Sign up

Export Citation Format

Share Document