Nonlinearities and Chaos-Like Control of Respiration During Square Wave Pulse Train Hypoxic Stimulation of the Carotid Body Chemoreceptors

Author(s):  
R. E. Dutton ◽  
P. J. Feustel ◽  
P. K. Ghatak ◽  
D. G. Davies ◽  
E. J. Smith
1993 ◽  
Vol 264 (1) ◽  
pp. R41-R50 ◽  
Author(s):  
A. Vardhan ◽  
A. Kachroo ◽  
H. N. Sapru

Stimulation of carotid body chemoreceptors by saline saturated with 100% CO2 elicited an increase in mean arterial pressure, respiratory rate, tidal volume, and minute ventilation (VE). Microinjections of L-glutamate into a midline area 0.5-0.75 mm caudal and 0.3-0.5 mm deep with respect to the calamus scriptorius increased VE. Histological examination showed that the site was located in the commissural nucleus of the nucleus tractus solitarii (NTS). The presence of excitatory amino acid receptors [N-methyl-D-aspartic acid (NMDA); kainate, quisqualate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and trans 1-amino-cyclopentane-trans-1,3-dicarboxylic acid (ACPD)] in this area was demonstrated by microinjections of appropriate agonists. Simultaneous blockade of NMDA and non-NMDA receptors by combined injections of DL-2-aminophosphonoheptanoate (AP-7; 1 nmol) and 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 1 nmol) abolished the responses to stimulation of carotid body on either side. Combined injections of AP-7 and DNQX did not produce a nonspecific depression of neurons because the responses to another agonist, carbachol, remained unaltered. Inhibition of the neurons in the aforementioned area with microinjections of muscimol (which hyperpolarizes neuronal cell bodies but not fibers of passage) also abolished the responses to subsequent carotid body stimulation on either side.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (2) ◽  
pp. H770-H773 ◽  
Author(s):  
W. Zhang ◽  
S. W. Mifflin

The nucleus tractus solitarius (NTS) is the primary site of termination of arterial baroreceptor and chemoreceptor afferent fibers. Excitatory amino acid (EAA) receptors within NTS have been shown to play an important role in the mediation of arterial baroreceptor reflexes; however, the importance of EAA receptors within NTS in the mediation of arterial chemoreceptor reflexes remains controversial. Therefore, in chloralose-urethan-anesthetized, mechanically ventilated, paralyzed rats, 4 nmol of the broad-spectrum EAA receptor antagonist kynurenic acid (Kyn) was injected into the NTS to observe the effects of EAA receptor blockade on the pressor responses evoked by either activation of ipsilateral carotid body chemoreceptors (by close arterial injection of CO2-saturated bicarbonate) or electrical stimulation of ipsilateral carotid sinus nerve (CSN). Under control conditions, activation of carotid body chemoreceptors and CSN stimulation evoked increases in arterial pressure of 27 +/- 2 (n = 24 sites) and 28 +/- 3% (n = 8), respectively. Kyn microinjection into NTS significantly reduced the pressor responses evoked by activation of carotid body chemoreceptors and electrical stimulation of the CSN for 20 and 25 min, respectively. Attenuation of pressor responses evoked by chemoreceptor activation were maximal at 20 min post-Kyn injection (13 +/- 2%), whereas CSN-evoked pressor responses were maximally attenuated at 15 min (6 +/- 4%). Microinjection into NTS of 4 nmol of xanthurenic acid, a structural analogue of Kyn with no EAA receptor antagonist properties, had no effect on chemoreceptor reflexes. We conclude that EAA receptors within NTS play an important role in the mediation of arterial chemoreceptor reflexes.


1977 ◽  
Vol 232 (5) ◽  
pp. H517-H525 ◽  
Author(s):  
R. Elsner ◽  
J. E. Angell-James ◽  
M. de Burgh Daly

In the anesthetized spontaneously breathing harbor seal Phoca vitulina stimulation of the carotid body chemoreceptors by intracarotid injections of sodium cyanide or by hypoxic hypercapnic blood causes an increase in tidal volume, respiratory frequency, and respiratory minute volume. The heart rate invariably decreased. Experimental dives caused apnea and bradycardia. When the carotid bodies are stimulated within 10 s of the commencement of a dive, the chemoreceptor-respiratory response is abolished, but the chemoreceptor-cardioinhibitory response is considerably enhanced. Electrical stimulation of the central cut end of a superior laryngeal nerve also causes apnea and bradycardia; stimulation of the carotid body now fails to produce a respiratory response but the cardioinhibitory effect is enhanced. These results indicate that the carotid bodies cause reflexly hyperventilation and bradycardia, and that these responses are considerably modified by other inputs to the central nervous system.


1964 ◽  
Vol 206 (6) ◽  
pp. 1189-1195 ◽  
Author(s):  
Shlomo Stern ◽  
Richard E. Ferguson ◽  
Elliot Rapaport

To study the hemodynamic effects of stimulation of the aortic and carotid body chemoreceptors, we injected 2.5– 20 µg/kg nicotine into the ascending aorta of anesthetized, artificially ventilated open-chest dogs. Pressures in the pulmonary artery, left atrium, and systemic arteries, and the stroke output of the right ventricle were measured simultaneously. Pulmonary and systemic vascular resistances (PVR, SVR) were calculated. Changes began 1.5–3.0 sec after the injection; the following two 5-sec periods were compared to a 5-sec control period immediately preceding injection. The injection of nicotine was followed by a significant reflex rise in PVR; the sensory receptors for the reflex were aortic chemoreceptors and the efferent paths were sympathetic fibers. Similar effects were not elicited by stimulation of the carotid body. Bronchoconstriction, changes in bronchial flow, shifts of blood volume between the vascular beds, and liberation of catecholamine were excluded as factors in the PVR increase. Bradycardia, increased SVR, and decreased flow also occurred after combined stimulation of the aortic and carotid chemoreceptors; however, when bradycardia was prevented by atropinization, no significant change in flow occurred.


1993 ◽  
Vol 75 (5) ◽  
pp. 2173-2179 ◽  
Author(s):  
S. E. Webber ◽  
J. G. Widdicombe

Arteries to the cervical trachea were perfused at constant flow in anesthetized sheep. Perfusion pressures (PP), blood pressure (BP), and changes in tracheal smooth muscle tone (Ptr) were measured. Stimulation of pulmonary C-fiber receptors decreased PP (-6.5%) and BP (-16.8%) and increased Ptr (+61.5%), changes prevented by vagotomy and therefore reflex. Stimulation of cardiac receptors and slowly adapting pulmonary stretch receptors decreased PP (-7.9%) and BP (-21.0) and increased Ptr (+19.0%), changes reversed by vagotomy and therefore reflex. Stimulation and inhibition of slowly adapting pulmonary stretch receptors had no vagal-dependent effect on PP and BP, but inflation decreased (-20.3%) and deflation increased Ptr (+35.2%), effects abolished by vagotomy and therefore reflex. Systemic hypoxia increased PP and BP before and after vagotomy (+12.2 and +40.3%), effects greatly reduced by cutting the carotid body nerves; it increased Ptr (+29.8%), an effect abolished by vagotomy and cutting the carotid body nerves. Systemic hypercapnia increased PP (+16.9%), BP (+20.5%), and Ptr (+36.2%), the first two responses being unaffected by vagotomy and the last almost abolished. Stimulation of carotid body chemoreceptors by KCN increased PP (+22.5%), BP (+104.7%), and Ptr (+8.5%), all responses prevented by cutting the carotid body nerves. Responses to intravenous injections of KCN were similar.


Sign in / Sign up

Export Citation Format

Share Document