Reflex control of the tracheal vasculature of sheep

1993 ◽  
Vol 75 (5) ◽  
pp. 2173-2179 ◽  
Author(s):  
S. E. Webber ◽  
J. G. Widdicombe

Arteries to the cervical trachea were perfused at constant flow in anesthetized sheep. Perfusion pressures (PP), blood pressure (BP), and changes in tracheal smooth muscle tone (Ptr) were measured. Stimulation of pulmonary C-fiber receptors decreased PP (-6.5%) and BP (-16.8%) and increased Ptr (+61.5%), changes prevented by vagotomy and therefore reflex. Stimulation of cardiac receptors and slowly adapting pulmonary stretch receptors decreased PP (-7.9%) and BP (-21.0) and increased Ptr (+19.0%), changes reversed by vagotomy and therefore reflex. Stimulation and inhibition of slowly adapting pulmonary stretch receptors had no vagal-dependent effect on PP and BP, but inflation decreased (-20.3%) and deflation increased Ptr (+35.2%), effects abolished by vagotomy and therefore reflex. Systemic hypoxia increased PP and BP before and after vagotomy (+12.2 and +40.3%), effects greatly reduced by cutting the carotid body nerves; it increased Ptr (+29.8%), an effect abolished by vagotomy and cutting the carotid body nerves. Systemic hypercapnia increased PP (+16.9%), BP (+20.5%), and Ptr (+36.2%), the first two responses being unaffected by vagotomy and the last almost abolished. Stimulation of carotid body chemoreceptors by KCN increased PP (+22.5%), BP (+104.7%), and Ptr (+8.5%), all responses prevented by cutting the carotid body nerves. Responses to intravenous injections of KCN were similar.

1992 ◽  
Vol 72 (6) ◽  
pp. 2311-2316 ◽  
Author(s):  
H. Miki ◽  
W. Hida ◽  
Y. Kikuchi ◽  
T. Chonan ◽  
M. Satoh ◽  
...  

We examined the effect of electrical stimulation of the hypoglossal nerve and pharyngeal lubrication with artificial surfactant (Surfactant T-A) on the opening of obstructed upper airway in nine anesthetized supine dogs. The upper airway was isolated from the lower airway by transecting the cervical trachea. Upper airway obstruction was induced by applying constant negative pressures (5, 10, 20, and 30 cmH2O) on the rostral cut end of the trachea. Peripheral cut ends of the hypoglossal nerves were electrically stimulated by square-wave pulses at various frequencies from 10 to 30 Hz (0.2-ms duration, 5–7 V), and the critical stimulating frequency necessary for opening the obstructed upper airway was measured at each driving pressure before and after pharyngeal lubrication with artificial surfactant. The critical stimulation frequency for upper airway opening significantly increased as upper airway pressure became more negative and significantly decreased with lubrication of the upper airway. These findings suggest that greater muscle tone of the genioglossus is needed to open the occluded upper airway with larger negative intraluminal pressure and that lubrication of the pharyngeal mucosa with artificial surfactant facilitates reopening of the upper airway.


1961 ◽  
Vol 201 (1) ◽  
pp. 89-91 ◽  
Author(s):  
H. E. Bredeck ◽  
R. A. Herin ◽  
N. H. Booth

Respiratory reflexes originating from chemoceptors in the carotid body have not been previously demonstrated in swine. These investigations indicate the carotid sinus areas of pigs possess chemoceptors sensitive to potassium cyanide and lobeline. Stimulation of these chemoceptors causes a reflex stimulation of the respiratory center and hyperpnea. The sensitivity of the chemoceptors to potassium cyanide is apparently enhanced by vagotomy, whereas this procedure does not reduce the threshold to lobeline. Intravenous injections of cyanide reflexly stimulate the respiratory center if one or both carotid sinus areas are intact. Following bilateral vagotomy and denervation of the chemoceptors in the carotid sinus regions, no respiratory response is elicited by intravenous injections of potassium cyanide.


1993 ◽  
Vol 264 (1) ◽  
pp. R41-R50 ◽  
Author(s):  
A. Vardhan ◽  
A. Kachroo ◽  
H. N. Sapru

Stimulation of carotid body chemoreceptors by saline saturated with 100% CO2 elicited an increase in mean arterial pressure, respiratory rate, tidal volume, and minute ventilation (VE). Microinjections of L-glutamate into a midline area 0.5-0.75 mm caudal and 0.3-0.5 mm deep with respect to the calamus scriptorius increased VE. Histological examination showed that the site was located in the commissural nucleus of the nucleus tractus solitarii (NTS). The presence of excitatory amino acid receptors [N-methyl-D-aspartic acid (NMDA); kainate, quisqualate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and trans 1-amino-cyclopentane-trans-1,3-dicarboxylic acid (ACPD)] in this area was demonstrated by microinjections of appropriate agonists. Simultaneous blockade of NMDA and non-NMDA receptors by combined injections of DL-2-aminophosphonoheptanoate (AP-7; 1 nmol) and 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 1 nmol) abolished the responses to stimulation of carotid body on either side. Combined injections of AP-7 and DNQX did not produce a nonspecific depression of neurons because the responses to another agonist, carbachol, remained unaltered. Inhibition of the neurons in the aforementioned area with microinjections of muscimol (which hyperpolarizes neuronal cell bodies but not fibers of passage) also abolished the responses to subsequent carotid body stimulation on either side.(ABSTRACT TRUNCATED AT 250 WORDS)


2000 ◽  
Vol 89 (1) ◽  
pp. 139-142 ◽  
Author(s):  
Robert L. Coon ◽  
Patrick J. Mueller ◽  
Philip S. Clifford

The canine cervical trachea has been used for numerous studies regarding the neural control of tracheal smooth muscle. The purpose of the present study was to determine whether there is lateral dominance by either the left or right vagal innervation of the canine cervical trachea. In anesthetized dogs, pressure in the cuff of the endotracheal tube was used as an index of smooth muscle tone in the trachea. After establishment of tracheal tone, as indicated by increased cuff pressure, either the right or left vagus nerve was sectioned followed by section of the contralateral vagus. Sectioning the right vagus first resulted in total loss of tone in the cervical trachea, whereas sectioning the left vagus first produced either a partial or no decrease in tracheal tone. After bilateral section of the vagi, cuff pressure was recorded during electrical stimulation of the rostral end of the right or left vagus. At the maximum current strength used, stimulation of the left vagus produced tracheal constriction that averaged 28.5% of the response to stimulation of the right vagus (9.0 ± 1.8 and 31.6 ± 2.5 mmHg, respectively). In conclusion, the musculature of cervical trachea in the dog appears to be predominantly controlled by vagal efferents in the right vagus nerve.


1993 ◽  
Vol 265 (2) ◽  
pp. H770-H773 ◽  
Author(s):  
W. Zhang ◽  
S. W. Mifflin

The nucleus tractus solitarius (NTS) is the primary site of termination of arterial baroreceptor and chemoreceptor afferent fibers. Excitatory amino acid (EAA) receptors within NTS have been shown to play an important role in the mediation of arterial baroreceptor reflexes; however, the importance of EAA receptors within NTS in the mediation of arterial chemoreceptor reflexes remains controversial. Therefore, in chloralose-urethan-anesthetized, mechanically ventilated, paralyzed rats, 4 nmol of the broad-spectrum EAA receptor antagonist kynurenic acid (Kyn) was injected into the NTS to observe the effects of EAA receptor blockade on the pressor responses evoked by either activation of ipsilateral carotid body chemoreceptors (by close arterial injection of CO2-saturated bicarbonate) or electrical stimulation of ipsilateral carotid sinus nerve (CSN). Under control conditions, activation of carotid body chemoreceptors and CSN stimulation evoked increases in arterial pressure of 27 +/- 2 (n = 24 sites) and 28 +/- 3% (n = 8), respectively. Kyn microinjection into NTS significantly reduced the pressor responses evoked by activation of carotid body chemoreceptors and electrical stimulation of the CSN for 20 and 25 min, respectively. Attenuation of pressor responses evoked by chemoreceptor activation were maximal at 20 min post-Kyn injection (13 +/- 2%), whereas CSN-evoked pressor responses were maximally attenuated at 15 min (6 +/- 4%). Microinjection into NTS of 4 nmol of xanthurenic acid, a structural analogue of Kyn with no EAA receptor antagonist properties, had no effect on chemoreceptor reflexes. We conclude that EAA receptors within NTS play an important role in the mediation of arterial chemoreceptor reflexes.


1996 ◽  
Vol 40 (3) ◽  
pp. 552-552 ◽  
Author(s):  
R. Sindelar ◽  
V. Dammann ◽  
A. Jonzon ◽  
P. Schaller ◽  
A. Schulze ◽  
...  

2000 ◽  
Vol 89 (5) ◽  
pp. 1709-1718 ◽  
Author(s):  
Véronique Diaz ◽  
Julie Arsenault ◽  
Jean-Paul Praud ◽  

The aim of this study was to test the hypothesis that capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function but does not alter other vagal pulmonary receptor functions or peripheral and central chemoreceptor functions. Eleven lambs were randomized to receive a subcutaneous injection of either 25 mg/kg capsaicin (6 lambs) or solvent (5 lambs) under general anesthesia. Capsaicin-treated lambs did not demonstrate the classical ventilatory response consistently observed in response to capsaicin bolus intravenous injection in control lambs. Moreover, the ventilatory responses to stimulation of the rapidly adapting pulmonary stretch receptors (intratracheal water instillation) and slowly adapting pulmonary stretch receptors (Hering-Breuer inflation reflex) were similar in both groups of lambs. Finally, the ventilatory responses to various stimuli and depressants of carotid body activity and to central chemoreceptor stimulation (CO2 rebreathing) were identical in control and capsaicin-treated lambs. We conclude that 25 mg/kg capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function without significantly affecting the other vagal pulmonary receptor functions or that of peripheral and central chemoreceptors.


1977 ◽  
Vol 232 (5) ◽  
pp. H517-H525 ◽  
Author(s):  
R. Elsner ◽  
J. E. Angell-James ◽  
M. de Burgh Daly

In the anesthetized spontaneously breathing harbor seal Phoca vitulina stimulation of the carotid body chemoreceptors by intracarotid injections of sodium cyanide or by hypoxic hypercapnic blood causes an increase in tidal volume, respiratory frequency, and respiratory minute volume. The heart rate invariably decreased. Experimental dives caused apnea and bradycardia. When the carotid bodies are stimulated within 10 s of the commencement of a dive, the chemoreceptor-respiratory response is abolished, but the chemoreceptor-cardioinhibitory response is considerably enhanced. Electrical stimulation of the central cut end of a superior laryngeal nerve also causes apnea and bradycardia; stimulation of the carotid body now fails to produce a respiratory response but the cardioinhibitory effect is enhanced. These results indicate that the carotid bodies cause reflexly hyperventilation and bradycardia, and that these responses are considerably modified by other inputs to the central nervous system.


Sign in / Sign up

Export Citation Format

Share Document