Heat Transfer from Horizontal Cylinders to a Saturated Helium-I Bath

1971 ◽  
pp. 352-358 ◽  
Author(s):  
R. M. Holdredge ◽  
P. W. McFadden
Author(s):  
Ian M. O. Gorman ◽  
Darina B. Murray ◽  
Gerard Byrne ◽  
Tim Persoons

The research described here is concerned with natural convection from isothermal cylinders, with a particular focus on the interaction between a pair of vertically aligned cylinders. Prime attention was focused on how the local heat transfer characteristics of the upper cylinder are affected due to buoyancy induced fluid flow from the lower cylinder. Tests were performed using internally heated copper cylinders with an outside diameter 30mm and a vertical separation distance between the cylinders ranging from two to three cylinder diameters. Plume interaction between the heated cylinders was investigated within a Rayleigh number range of 2×106 to 6×106. Spectral analysis of the associated heat transfer interaction is presented showing that interaction between the cylinders causes oscillation of the thermal plume. The effect of this oscillation is considered as a possible enhancement mechanism of the heat transfer performance of the upper cylinder.


1990 ◽  
Vol 112 (2) ◽  
pp. 441-450 ◽  
Author(s):  
A. Sakurai ◽  
M. Shiotsu ◽  
K. Hata

Experimental data of pool film boiling heat transfer from horizontal cylinders in various liquids such as water, ethanol, isopropanol, Freon-113, Freon-11, liquid nitrogen, and liquid argon for wide ranges of system pressure, liquid subcooling, surface superheat and cylinder diameter are reported. These experimental data are compared with a rigorous numerical solution and an approximate analytical solution derived from a theoretical model based on laminar boundary layer theory for pool film boiling heat transfer from horizontal cylinders including the effects of liquid subcooling and radiation from the cylinder. A new correlation was developed by slightly modifying the approximate analytical solution to agree better with the experimental data. The values calculated from the correlation agree with the authors’ data within ± 10 percent, and also with other researchers’ data for various liquids including those with large radiation effects, though these other data were obtained mainly under saturated conditions at atmospheric pressure.


Author(s):  
F. A. Jafar ◽  
G. R. Thorpe ◽  
O¨. F. Turan

Trickle bed chemical reactors and equipment used to cool horticultural produce usually involve three phase porous media. The fluid dynamics and heat transfer processes that occur in such equipment are generally quantified by means of empirical relationships between dimensionless groups. The research reported in this paper is motivated by the possibility of using detailed numerical simulations of the phenomena that occur in beds of irrigated porous media to obviate the need for empirical correlations. Numerical predictions are obtained using a CFD code (FLUENT) for 2-D configurations of three cylinders. Local and mean heat transfer coefficients around these non-contacting horizontal cylinders are calculated numerically. The present results compare well with those available in the literature. The numerical results provide an insight into the cooling mechanisms within beds of unsaturated porous media.


Sign in / Sign up

Export Citation Format

Share Document