scholarly journals Natural Convection From Isothermal Horizontal Cylinders

Author(s):  
Ian M. O. Gorman ◽  
Darina B. Murray ◽  
Gerard Byrne ◽  
Tim Persoons

The research described here is concerned with natural convection from isothermal cylinders, with a particular focus on the interaction between a pair of vertically aligned cylinders. Prime attention was focused on how the local heat transfer characteristics of the upper cylinder are affected due to buoyancy induced fluid flow from the lower cylinder. Tests were performed using internally heated copper cylinders with an outside diameter 30mm and a vertical separation distance between the cylinders ranging from two to three cylinder diameters. Plume interaction between the heated cylinders was investigated within a Rayleigh number range of 2×106 to 6×106. Spectral analysis of the associated heat transfer interaction is presented showing that interaction between the cylinders causes oscillation of the thermal plume. The effect of this oscillation is considered as a possible enhancement mechanism of the heat transfer performance of the upper cylinder.

Author(s):  
Tim Persoons ◽  
Ian M. O. Gorman ◽  
Gerry Byrne ◽  
Darina B. Murray

This paper discusses the close coupling between fluid dynamics and local natural convection heat transfer rates from a pair of isothermally heated horizontal cylinders submerged in water. The presence of a second heated cylinder induces heat transfer enhancements of up to 10%, and strong fluctuations in local heat transfer rate. Therefore specific attention is focused on how the local heat transfer characteristics of the upper cylinder are affected by buoyancy induced fluid flow from the lower cylinder. The paper investigates a range of Rayleigh number between 2·106 and 6·106, and a vertical cylinder spacing between 2D and 4D. Simultaneous local heat flux measurements and flow velocity measurements using particle image velocimetry reveal oscillatory behaviour of the thermal plume, depending on operating conditions. A joint temporal analysis of the data has provided new insights into the governing mechanisms, which enables further optimisation of the heat transfer performance.


1983 ◽  
Vol 105 (1) ◽  
pp. 108-116 ◽  
Author(s):  
J. Prusa ◽  
L. S. Yao

Laminar natural convection flow between vertically eccentric horizontal cylinders is studied numerically. The inner and outer cylinders are heated and cooled, respectively, to maintain constant surface temperatures. A physical model is introduced which accounts for the effects of fluid buoyancy as well as the eccentricity of the outer cylinder. A radial transformation is used to map the eccentric outer boundary into a concentric circle. Both eccentricity and buoyancy have a significant influence on the heat transfer and flow field of a fluid between horizontal cylinders. The effect of buoyancy, which enhances average heat transfer, increases with the Grashof number. Eccentricity influences the flow in two ways. First, by decreasing the distance between the two cylinders over part of their surfaces, it increases the local heat transfer due to conduction. Second, the eccentricity influences the connective mode of heat transfer. Results show that moderate positive values of eccentricity, enhance convective heat transfer. Results for a range of Grashof number are given, for varying eccentricity, for a radius ratio of 2.6 and a Prandtl number of 0. 706. Detailed predictions of the temperature and flow fields, and local heat transfer rates are given for representative cases. Also presented is the variation of average heat transfer rate and average shear stress with Grashof number and eccentricity. Comparisons with earlier numerical, experimental and analytic results are made.


Author(s):  
M.A. Mansour ◽  
Sameh Elsayed Ahmed ◽  
Ali J. Chamkha

Purpose This paper aims to investigate the entropy generation due to magnetohydrodynamic natural convection flow and heat transfer in a porous enclosure filled with Cu-water nanofluid in the presence of viscous dissipation effect. The left and right walls of the cavity are thermally insulated. There are heated and cold parts, and these are placed on the bottom and top wall, respectively, whereas the remaining parts are thermally insulated. Design/methodology/approach The finite volume method is used to solve the dimensionless partial differential equations governing the problem. A comparison with previously published woks is presented and is found to be in an excellent agreement. Findings The minimization of entropy generation and local heat transfer according to different values of the governing parameters are presented in details. It is found that the presence of magnetic field has negative effects on the local entropy generation because of heat transfer and the local total entropy generation. Also, the increase in the heated part length leads to a decrease in the local Nusselt number. Originality/value This problem is original, as it has not been considered previously.


2000 ◽  
Author(s):  
M. Greiner ◽  
P. F. Fischer ◽  
H. M. Tufo

Abstract Two-dimensional Navier-Stokes simulations of heat and momentum transport in an intermittently grooved passage are performed using the spectral element technique for the Reynolds number range 600 ≤ Re ≤ 1800. The computational domain has seven contiguous transverse grooves cut symmetrically into opposite walls, followed by a flat section with the same length. Periodic inflow/outflow boundary conditions are employed. The development and decay of unsteady flow is observed in the grooved and flat sections, respectively. The axial variation of the unsteady component of velocity is compared to the local heat transfer, shear stress and pressure gradient. The results suggest that intermittently grooved passages may offer even higher heat transfer for a given pumping power than the levels observed in fully grooved passages.


1992 ◽  
Vol 114 (1) ◽  
pp. 115-120 ◽  
Author(s):  
B. W. Webb ◽  
T. L. Bergman

Natural convection in an enclosure with a uniform heat flux on two vertical surfaces and constant temperature at the adjoining walls has been investigated both experimentally and theoretically. The thermal boundary conditions and enclosure geometry render the buoyancy-induced flow and heat transfer inherently three dimensional. The experimental measurements include temperature distributions of the isoflux walls obtained using an infrared thermal imaging technique, while the three-dimensional equations governing conservation of mass, momentum, and energy were solved using a control volume-based finite difference scheme. Measurements and predictions are in good agreement and the model predictions reveal strongly three-dimensional flow in the enclosure, as well as high local heat transfer rates at the edges of the isoflux wall. Predicted average heat transfer rates were correlated over a range of the relevant dimensionless parameters.


2011 ◽  
Vol 110-116 ◽  
pp. 1613-1618 ◽  
Author(s):  
S. Kapoor ◽  
P. Bera

A comprehensive numerical study on the natural convection in a hydrodynamically anisotropic as well as isotropic porous enclosure is presented, flow is induced by non uniform sinusoidal heating of the right wall of the enclosure. The principal directions of the permeability tensor has been taken oblique to the gravity vector. The spectral Element method has been adopted to solve numerically the governing differential equations by using the vorticity-stream-function approach. The results are presented in terms of stream function, temperature profile and Nusselt number. The result show that the maximum heat transfer takes place at y = 1.5 when N is odd.. Also, increasing media permeability, by changing K* = 1 to K* = 0.2, increases heat transfer rate at below and above right corner of the enclosure. Furthermore, for the all values of N, profiles of local Nusselt number (Nuy) in isotropic as well as anisotropic media are similar, but for even values of N differ slightly at N = 2.. In particular the present analysis shows that, different periodicity (N) of temperature boundary condition has the significant effect on the flow pattern and consequently on the local heat transfer phenomena.


Author(s):  
Xing Yang ◽  
Zhao Liu ◽  
Zhenping Feng

Detailed heat transfer distributions are numerically investigated on a multiple jet impingement target surface with staggered arrays of spherical dimples where coolant can be extracted through film holes for external film cooling. The three dimensional Reynolds-averaged Navier-Stokes analysis with SST k-ω turbulence model is conducted at jet Reynolds number from 15,000 to 35,000. The separation distance between the jet plate and the target surface varies from 3 to 5 jet diameters and two jet-induced crossflow schemes are included to be referred as large and small crossflow at one and two opposite exit openings correspondingly. Flow and heat transfer results for the dimpled target plate with three suction ratios of 2.5%, 5.0% and 12.0% are compared with those on dimpled surfaces without film holes. The results indicate the presence of film holes could alter the local heat transfer distributions, especially near the channel outlets where the crossflow level is the highest. The heat transfer enhancements by applying film holes to the dimpled surfaces is improved to different degrees at various suction ratios, and the enhancements depend on the coupling effect of impingement and channel flow, which is relevant to jet Reynolds number, jet-to-plate spacing and crossflow scheme.


Author(s):  
Jakob Hærvig ◽  
Anna Lyhne Jensen ◽  
Henrik Sørensen

Abstract Vertical smooth surfaces are commonly used for transferring heat by natural convection. Many studies have tried altering smooth surfaces in various ways to increase heat transfer. Many of these studies fail to increase global heat transfer. The problem commonly reported is dead zones appearing just upstream and downstream obstructions that effectively decrease wall temperature gradients normal to the surface. In this study, we simulate how changes geometry of forward facing triangular roughness elements affect local and global heat transfer for isothermal plates. We change the aspect ratio of the triangular elements from L/h = 5 to L/h = 40 at Grashof numbers of GrL = 8.0 · 104 and GrL = 6.4 · 105. In all cases the flow remains laminar. Even when accounting for the increase in surface area, we keep observing a decrease in global heat transfer compared to the smooth vertical plate. However, the results show by carefully selecting the aspect ratio and pitch distance of the triangular elements based on the Grashof number, the dead zone behind the horizontal part can be eliminated thereby significantly increasing local heat transfer. This observation could help to improve cooling of electronics with high localised heat fluxes.


1983 ◽  
Vol 105 (3) ◽  
pp. 465-468 ◽  
Author(s):  
L. S. Yao

A transformation method is applied to study the natural convection along irregular vertical surfaces. A sinusoidal surface is used as a specific example to demonstrate the advantages of the transformation method, and to elucidate the heat transfer mechanism near such surfaces. The numerical results show that the frequency of the local heat transfer rate is twice that of the wavy surface. The amplitude of the oscillating local Nusselt number gradually decreases downstream where the natural convection boundary layer grows thick.


Sign in / Sign up

Export Citation Format

Share Document