scholarly journals Levels of Abstraction in Computing Systems and Optical Interconnection Technology

Author(s):  
Haldun M. Ozaktas
2015 ◽  
Vol 23 (16) ◽  
pp. 20480 ◽  
Author(s):  
Kang Wang ◽  
Huaxi Gu ◽  
Yintang Yang ◽  
Kun Wang

2007 ◽  
Vol 13 (3) ◽  
pp. 223-247 ◽  
Author(s):  
Kazuto Tominaga ◽  
Tooru Watanabe ◽  
Keiji Kobayashi ◽  
Masaki Nakamura ◽  
Koji Kishi ◽  
...  

Artificial chemistries are mainly used to construct virtual systems that are expected to show behavior similar to living systems. In this study, we explore possibilities of applying an artificial chemistry to modeling natural biochemical systems—or, to be specific, molecular computing systems—and show that it may be a useful modeling tool for molecular computation. We previously proposed an artificial chemistry based on string pattern matching and recombination. This article first demonstrates that this artificial chemistry is computationally universal if it has only rules that have one reactant or two reactants. We think this is a good property of an artificial chemistry that models molecular computing, because natural elementary chemical reactions, on which molecular computing is based, are mostly unimolecular or bimolecular. Then we give two illustrative example models for DNA computing in our artificial chemistry: one is for the type of computation called the Adleman-Lipton paradigm, and the other is for a DNA implementation of a finite automaton. Through the construction of these models we observe preferred properties of the artificial chemistry for modeling molecular computing, such as having no spatial structure and being flexible in choosing levels of abstraction.


2020 ◽  
Vol 43 ◽  
Author(s):  
Chris Fields ◽  
James F. Glazebrook

Abstract Gilead et al. propose an ontology of abstract representations based on folk-psychological conceptions of cognitive architecture. There is, however, no evidence that the experience of cognition reveals the architecture of cognition. Scale-free architectural models propose that cognition has the same computational architecture from sub-cellular to whole-organism scales. This scale-free architecture supports representations with diverse functions and levels of abstraction.


Author(s):  
Douglas L. Dorset ◽  
Barbara Moss

A number of computing systems devoted to the averaging of electron images of two-dimensional macromolecular crystalline arrays have facilitated the visualization of negatively-stained biological structures. Either by simulation of optical filtering techniques or, in more refined treatments, by cross-correlation averaging, an idealized representation of the repeating asymmetric structure unit is constructed, eliminating image distortions due to radiation damage, stain irregularities and, in the latter approach, imperfections and distortions in the unit cell repeat. In these analyses it is generally assumed that the electron scattering from the thin negativelystained object is well-approximated by a phase object model. Even when absorption effects are considered (i.e. “amplitude contrast“), the expansion of the transmission function, q(x,y)=exp (iσɸ (x,y)), does not exceed the first (kinematical) term. Furthermore, in reconstruction of electron images, kinematical phases are applied to diffraction amplitudes and obey the constraints of the plane group symmetry.


2007 ◽  
Author(s):  
Amy Perfors ◽  
Charles Kemp ◽  
Elizabeth Wonnacott ◽  
Joshua B. Tenenbaum

Sign in / Sign up

Export Citation Format

Share Document