Elementary Properties of the Chord-Tangent Group Law on a Cubic Curve

Author(s):  
Dale Husemöller
Keyword(s):  
2007 ◽  
Vol 0060 ◽  
pp. 67-89
Author(s):  
Madeeha Khalid
Keyword(s):  

2009 ◽  
Vol 104 (2) ◽  
pp. 188 ◽  
Author(s):  
Magnus Dehli Vigeland

In analogy with the classical group law on a plane cubic curve, we define a group law on a smooth plane tropical cubic curve. We show that the resulting group is isomorphic to $S^1$.


1989 ◽  
Vol 9 (6) ◽  
pp. 70-72
Author(s):  
J.F. Blinn
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hongfeng Wu ◽  
Liangze Li ◽  
Fan Zhang

We propose an elaborate geometry approach to explain the group law on twisted Edwards curves which are seen as the intersection of quadric surfaces in place. Using the geometric interpretation of the group law, we obtain the Miller function for Tate pairing computation on twisted Edwards curves. Then we present the explicit formulae for pairing computation on twisted Edwards curves. Our formulae for the doubling step are a little faster than that proposed by Arène et al. Finally, to improve the efficiency of pairing computation, we present twists of degrees 4 and 6 on twisted Edwards curves.


1981 ◽  
Vol 90 (2) ◽  
pp. 273-278 ◽  
Author(s):  
C. T. Stretch

The object of this paper is to prove that for a finite abelian group G the natural map is injective, where Â(G) is the completion of the Burnside ring of G and σ0(BG) is the stable cohomotopy of the classifying space BG of G. The map â is detected by means of an M U* exponential characteristic class for permutation representations constructed in (11). The result is a generalization of a theorem of Laitinen (4) which treats elementary abelian groups using ordinary cohomology. One interesting feature of the present proof is that it makes explicit use of the universality of the formal group law of M U*. It also involves a computation of M U*(BG) in terms of the formal group law. This may be of independent interest. Since writing the paper the author has discovered that M U*(BG) has previously been calculated by Land-weber(5).


Author(s):  
Piergiulio Tempesta

We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the Z-entropies . Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every Z -entropy is composable (Tempesta 2016 Ann. Phys. 365 , 180–197. ( doi:10.1016/j.aop.2015.08.013 )). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon–Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the Z -entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.


1930 ◽  
Vol 26 (2) ◽  
pp. 206-219 ◽  
Author(s):  
R. Vaidyanathaswamy

In the geometry of the cubic curve Γ in space, we have to study the quadrics Q which stand in certain special relations to the curve. We shall find it convenient to refer to these relations as A, B, B′, C, C′; these are defined below.


2003 ◽  
Vol 74 (3) ◽  
pp. 295-312 ◽  
Author(s):  
R. G. Burns ◽  
Yuri Medvedev

AbstractIf ω ≡ 1 is a group law implying virtual nilpotence in every finitely generated metabelian group satisfying it, then it implies virtual nilpotence for the finitely generated groups of a large class of groups including all residually or locally soluble-or-finite groups. In fact the groups of satisfying such a law are all nilpotent-by-finite exponent where the nilpotency class and exponent in question are both bounded above in terms of the length of ω alone. This yields a dichotomy for words. Finally, if the law ω ≡ 1 satisfies a certain additional condition—obtaining in particular for any monoidal or Engel law—then the conclusion extends to the much larger class consisting of all ‘locally graded’ groups.


Sign in / Sign up

Export Citation Format

Share Document