Differential Equations Via Approximation Methods

2014 ◽  
pp. 61-65
Author(s):  
César Pérez López
2018 ◽  
Vol 1 (3) ◽  
pp. 30 ◽  
Author(s):  
Hussein ALKasasbeh ◽  
Irina Perfilieva ◽  
Muhammad Ahmad ◽  
Zainor Yahya

In this research, three approximation methods are used in the new generalized uniform fuzzy partition to solve the system of differential equations (SODEs) based on fuzzy transform (FzT). New representations of basic functions are proposed based on the new types of a uniform fuzzy partition and a subnormal generating function. The main properties of a new uniform fuzzy partition are examined. Further, the simpler form of the fuzzy transform is given alongside some of its fundamental results. New theorems and lemmas are proved. In accordance with the three conventional numerical methods: Trapezoidal rule (one step) and Adams Moulton method (two and three step modifications), new iterative methods (NIM) based on the fuzzy transform are proposed. These new fuzzy approximation methods yield more accurate results in comparison with the above-mentioned conventional methods.


Author(s):  
Safia Meftah

The question discussed in this study concerns one of the most helpful approximation methods, namely, the expansion of a solution of a differential equation in a series in powers of a small parameter. We used the Lindstedt-Poincaré perturbation method to construct a solution closer to uniformly valid asymptotic expansions for periodic solutions of second-order nonlinear differential equations.


1986 ◽  
Vol 29 (3) ◽  
pp. 299-308 ◽  
Author(s):  
A. J. B. Potter

In [3] Fuller introduced an index (now called the Fuller index) in order to study periodic solutions of ordinary differential equations. The objective of this paper is to give a simple generalisation of the Fuller index which can be used to study periodic points of flows in Banach spaces. We do not claim any significant breakthrough but merely suggest that the simplistic approach, presented here, might prove useful for the study of non-linear differential equations. We show our results can be used to study functional differential equations.


Acta Numerica ◽  
1999 ◽  
Vol 8 ◽  
pp. 197-246 ◽  
Author(s):  
Eckhard Platen

This paper aims to give an overview and summary of numerical methods for the solution of stochastic differential equations. It covers discrete time strong and weak approximation methods that are suitable for different applications. A range of approaches and results is discussed within a unified framework. On the one hand, these methods can be interpreted as generalizing the well-developed theory on numerical analysis for deterministic ordinary differential equations. On the other hand they highlight the specific stochastic nature of the equations. In some cases these methods lead to completely new and challenging problems.


Sign in / Sign up

Export Citation Format

Share Document