scholarly journals A New Approach to Approximate Solutions for Nonlinear Differential Equation

Author(s):  
Safia Meftah

The question discussed in this study concerns one of the most helpful approximation methods, namely, the expansion of a solution of a differential equation in a series in powers of a small parameter. We used the Lindstedt-Poincaré perturbation method to construct a solution closer to uniformly valid asymptotic expansions for periodic solutions of second-order nonlinear differential equations.

2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Hector Vazquez-Leal ◽  
Arturo Sarmiento-Reyes ◽  
Yasir Khan ◽  
Uriel Filobello-Nino ◽  
Alejandro Diaz-Sanchez

The fact that most of the physical phenomena are modelled by nonlinear differential equations underlines the importance of having reliable methods for solving them. This work presents the rational biparameter homotopy perturbation method (RBHPM) as a novel tool with the potential to find approximate solutions for nonlinear differential equations. The method generates the solutions in the form of a quotient of two power series of different homotopy parameters. Besides, in order to improve accuracy, we propose the Laplace-Padé rational biparameter homotopy perturbation method (LPRBHPM), when the solution is expressed as the quotient of two truncated power series. The usage of the method is illustrated with two case studies. On one side, a Ricatti nonlinear differential equation is solved and a comparison with the homotopy perturbation method (HPM) is presented. On the other side, a nonforced Van der Pol Oscillator is analysed and we compare results obtained with RBHPM, LPRBHPM, and HPM in order to conclude that the LPRBHPM and RBHPM methods generate the most accurate approximated solutions.


2005 ◽  
Vol 03 (02) ◽  
pp. 145-155 ◽  
Author(s):  
YUJI LIU ◽  
WEIGUO GE ◽  
ZHANJI GUI

We establish the existence of at least three positive periodic solutions to the second order differential equation with periodic coefficients [Formula: see text] where f is continuous with f(t + T, x) = f(t,x) for (t,x) ∊ R × R and T > 0, p, q are continuous and T-periodic with p > 0 and q ≥ 0. We accomplish this by making growth assumptions on f, which can apply to many more cases than those discussed in recent works. An example to illustrate the main result is given.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Héctor Vázquez-Leal

The solution methods of nonlinear differential equations are very important because most of the physical phenomena are modelled by using such kind of equations. Therefore, this work presents a rational version of homotopy perturbation method (RHPM) as a novel tool with high potential to find approximate solutions for nonlinear differential equations. We present two case studies; for the first example, a comparison between the proposed method and the HPM method is presented; it will show how the RHPM generates highly accurate approximate solutions requiring less iteration, in comparison to results obtained by the HPM method. For the second example, which is a Van der Pol oscillator problem, we compare RHPM, HPM, and VIM, finding out that RHPM method generates the most accurate approximated solution.


2021 ◽  
pp. 1-19
Author(s):  
Calogero Vetro ◽  
Dariusz Wardowski

We discuss a third-order differential equation, involving a general form of nonlinearity. We obtain results describing how suitable coefficient functions determine the asymptotic and (non-)oscillatory behavior of solutions. We use comparison technique with first-order differential equations together with the Kusano–Naito’s and Philos’ approaches.


2016 ◽  
Vol 6 (1) ◽  
pp. 19 ◽  
Author(s):  
Ahmad Salah Edeen Nassef ◽  
Mohammed A. Dahim

<p class="1Body">This paper was investigating the buckling problem of reinforced concrete columns considering the reinforced concrete as bi – modular material. Governing differential equations was driven. The relation between the non-dimensional transverse deflection and non-dimensional distance between centroid axis and the neutral axis "eccentricity" was drawn to enable the solution of the governing differential equation. The new approach was verified with different experimental results and different codes of practice.<strong></strong></p>


2010 ◽  
Vol 2010 ◽  
pp. 1-20 ◽  
Author(s):  
Kun-Wen Wen ◽  
Gen-Qiang Wang ◽  
Sui Sun Cheng

Solutions of quite a few higher-order delay functional differential equations oscillate or converge to zero. In this paper, we obtain several such dichotomous criteria for a class of third-order nonlinear differential equation with impulses.


Sign in / Sign up

Export Citation Format

Share Document