scholarly journals New Approximation Methods Based on Fuzzy Transform for Solving SODEs: II

2018 ◽  
Vol 1 (3) ◽  
pp. 30 ◽  
Author(s):  
Hussein ALKasasbeh ◽  
Irina Perfilieva ◽  
Muhammad Ahmad ◽  
Zainor Yahya

In this research, three approximation methods are used in the new generalized uniform fuzzy partition to solve the system of differential equations (SODEs) based on fuzzy transform (FzT). New representations of basic functions are proposed based on the new types of a uniform fuzzy partition and a subnormal generating function. The main properties of a new uniform fuzzy partition are examined. Further, the simpler form of the fuzzy transform is given alongside some of its fundamental results. New theorems and lemmas are proved. In accordance with the three conventional numerical methods: Trapezoidal rule (one step) and Adams Moulton method (two and three step modifications), new iterative methods (NIM) based on the fuzzy transform are proposed. These new fuzzy approximation methods yield more accurate results in comparison with the above-mentioned conventional methods.

2018 ◽  
Vol 1 (3) ◽  
pp. 29 ◽  
Author(s):  
Hussein ALKasasbeh ◽  
Irina Perfilieva ◽  
Muhammad Ahmad ◽  
Zainor Yahya

In this paper, new approximation methods for solving systems of ordinary differential equations (SODEs) by fuzzy transform (FzT) are introduced and discussed. In particular, we propose two modified numerical schemes to solve SODEs where the technique of FzT is combined with one-stage and two-stage numerical methods. Moreover, the error analysis of the new approximation methods is discussed. Finally, numerical examples of the proposed approach are confirmed, and applications are presented.


Acta Numerica ◽  
1999 ◽  
Vol 8 ◽  
pp. 197-246 ◽  
Author(s):  
Eckhard Platen

This paper aims to give an overview and summary of numerical methods for the solution of stochastic differential equations. It covers discrete time strong and weak approximation methods that are suitable for different applications. A range of approaches and results is discussed within a unified framework. On the one hand, these methods can be interpreted as generalizing the well-developed theory on numerical analysis for deterministic ordinary differential equations. On the other hand they highlight the specific stochastic nature of the equations. In some cases these methods lead to completely new and challenging problems.


1966 ◽  
Vol 19 (3) ◽  
pp. 467 ◽  

The study of non-radial adiabatic oscillations of stars requires the solution of a complicated system of differential equations and the extensive use of numerical methods.


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


Sign in / Sign up

Export Citation Format

Share Document