Computing Symbolic Support Functions by Classical Theorem-Proving Techniques

Author(s):  
Urs Hänni
1998 ◽  
Vol 37 (01) ◽  
pp. 16-25 ◽  
Author(s):  
P. Ringleb ◽  
T. Steiner ◽  
P. Knaup ◽  
W. Hacke ◽  
R. Haux ◽  
...  

Abstract:Today, the demand for medical decision support to improve the quality of patient care and to reduce costs in health services is generally recognized. Nevertheless, decision support is not yet established in daily routine within hospital information systems which often show a heterogeneous architecture but offer possibilities of interoperability. Currently, the integration of decision support functions into clinical workstations is the most promising way. Therefore, we first discuss aspects of integrating decision support into clinical workstations including clinical needs, integration of database and knowledge base, knowledge sharing and reuse and the role of standardized terminology. In addition, we draw up functional requirements to support the physician dealing with patient care, medical research and administrative tasks. As a consequence, we propose a general architecture of an integrated knowledge-based clinical workstation. Based on an example application we discuss our experiences concerning clinical applicability and relevance. We show that, although our approach promotes the integration of decision support into hospital information systems, the success of decision support depends above all on an adequate transformation of clinical needs.


Author(s):  
Brian Street

This book develops a new theory of multi-parameter singular integrals associated with Carnot–Carathéodory balls. The book first details the classical theory of Calderón–Zygmund singular integrals and applications to linear partial differential equations. It then outlines the theory of multi-parameter Carnot–Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. The book then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. This book will interest graduate students and researchers working in singular integrals and related fields.


2020 ◽  
Author(s):  
Thomasna Illahi

Education administration is a series of activities or the entire process of controlling a number of people working together to achieve educational goals in a planned and systematic manner held in a particular environment, especially in the form of educational institutions. The backbone of the education sector is its administrative and operational staff. From finance to human resources, the central support functions are similar to those found in organizations of any size. Like other organizations, no school can operate effectively without them.


1986 ◽  
Author(s):  
Martin Abadi ◽  
Zohar Manna
Keyword(s):  

2021 ◽  
pp. 1-15
Author(s):  
Geoff Sutcliffe

The CADE ATP System Competition (CASC) is the annual evaluation of fully automatic, classical logic Automated Theorem Proving (ATP) systems. CASC-J10 was the twenty-fifth competition in the CASC series. Twenty-four ATP systems and system variants competed in the various competition divisions. This paper presents an outline of the competition design, and a commentated summary of the results.


1993 ◽  
Vol 19 (3-4) ◽  
pp. 275-301
Author(s):  
Andrzej Biela

In this paper we shall introduce a formal system of algorithmic logic which enables us to formulate some problems connected with a retrieval system which provides a comprehensive tool in automated theorem proving of theorems consisting of programs, procedures and functions. The procedures and functions may occur in considered theorems while the program of the above mentioned system is being executed. We can get an answer whether some relations defined by programs hold and we can prove functional equations in a dynamic way by looking for a special set of axioms /assumptions/ during the execution of system. We formulate RS-algorithm which enables us to construct the set of axioms for proving some properties of functions and relations defined by programs. By RS-algorithm we get the dynamic process of proving functional equations and we can answer the question whether some relations defined by programs hold. It enables us to solve some problems concerning the correctness of programs. This system can be used for giving an expert appraisement. We shall provide the major structures and a sketch of an implementation of the above formal system.


Sign in / Sign up

Export Citation Format

Share Document