Ionic Processes at Membrane Surfaces: The Role of Electrical Double Layers in Electrically Stimulated Ion Transport

Author(s):  
Martin Blank
1972 ◽  
Vol 55 (4) ◽  
pp. 641-657 ◽  
Author(s):  
C. A. Miller

An approximate solution is developed for the system of equations describing flow and ion transport in a diffuse electrical double layer slightly perturbed from equilibrium. The approximation is valid only when the potential difference across the diffuse layer is small, less than about 25 mV. When the approximate solution is used to study wave motion of low-tension interfaces, it is found chat ion transport in diffuse layers slows down interfacial motion in both stable and unstable situations. Although the slowing effect is relatively small (a few per cent or less) when the small potential approximation applies, the form of the solution suggests that the effect could be significant for potential differences in the 50–100 mV range, which exist in many systems of interest. There are also indications that the slowing effect can significantly influence wave motion of thin liquid films with diffuse layers, e.g. soap films, although a detailed analysis of the thin-film situation is not carried out.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Veton Haziri ◽  
Tu Pham Tran Nha ◽  
Avni Berisha ◽  
Jean-François Boily

AbstractGas bubbles grown on solids are more than simple vehicles for gas transport. They are charged particles with surfaces populated with exchangeable ions. We here unveil a gateway for alkali metal ion transport between oxygen bubbles and semi-conducting (iron oxide) and conducting (gold) surfaces. This gateway was identified by electrochemical impedance spectroscopy using an ultramicroelectrode in direct contact with bubbles pinned onto these solid surfaces. We show that this gateway is naturally present at open circuit potentials, and that negative electric potentials applied through the solid enhance ion transport. In contrast, positive potentials or contact with an insulator (polytetrafluoroethylene) attenuates transport. We propose that this gateway is generated by overlapping electric double layers of bubbles and surfaces of contrasting (electro)chemical potentials. Knowledge of this ion transfer phenomenon is essential for understanding electric shielding and reaction overpotential caused by bubbles on catalysts. This has especially important ramifications for predicting processes including mineral flotation, microfluidics, pore water geochemistry, and fuel cell technology.


Soft Matter ◽  
2021 ◽  
Author(s):  
Aditya Natu ◽  
Uddipta Ghosh

Flow of polymeric liquids in narrow confinements of rectangular cross section, in the presence of electrical double layers is analyzed here. Our analysis is motivated by the fact that many...


1991 ◽  
Vol 36 (11-12) ◽  
pp. 1677-1684 ◽  
Author(s):  
G.M. Torrie ◽  
G.N. Patey

Sign in / Sign up

Export Citation Format

Share Document