membrane ion transport
Recently Published Documents


TOTAL DOCUMENTS

44
(FIVE YEARS 3)

H-INDEX

13
(FIVE YEARS 2)

Crystals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 180 ◽  
Author(s):  
Ibon Alkorta ◽  
José Elguero ◽  
Antonio Frontera

In this review, we provide a consistent description of noncovalent interactions, covering most groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover, the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds, the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered. Research and applications of σ-hole and π-hole interactions involving the p-block element is growing exponentially. The important applications include supramolecular chemistry, crystal engineering, catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the fact that this review is not intended to be comprehensive, a number of representative works for each type of interaction is provided. The possibility of modeling the dissociation energies of the complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.


2020 ◽  
Vol 22 (14) ◽  
pp. 7283-7293
Author(s):  
Yuanyuan Ji ◽  
Hongxi Luo ◽  
Geoffrey M. Geise

Understanding the effects of polymer chemistry on membrane ion transport properties is critical for enabling efforts to design advanced highly permselective ion exchange membranes for water purification and energy applications.


2017 ◽  
Vol 149 (10) ◽  
pp. 911-920 ◽  
Author(s):  
Osvaldo Alvarez ◽  
Ramon Latorre

In 1943, David Goldman published a seminal paper in The Journal of General Physiology that reported a concise expression for the membrane current as a function of ion concentrations and voltage. This body of work was, and still is, the theoretical pillar used to interpret the relationship between a cell’s membrane potential and its external and/or internal ionic composition. Here, we describe from an historical perspective the theory underlying the constant-field equation and its application to membrane ion transport.


2015 ◽  
Vol 3 (2) ◽  
pp. 151
Author(s):  
Olly Norita Tetra ◽  
Zaharasmi K ◽  
Zaharasmi K ◽  
Refinel ◽  
Refinel ◽  
...  

 ABSTRACT Zn(II) transport from the source phase into the source phase had been researched by using dithizone as carrier through bulk liquid membrane. Ion transport are started by adding 6 mL source phase that consist of Zn(II), 12 mL receiver phase that consist of Na2EDTA and 20 mL membrane phase that consist of dithizone as carrier. The experiment operation technique was assisted by magnetic stirrer mixing at 340 rpm speed within 15 minutes equilibrium time. The measurement was done to both of source phase and receiver phase by using Atomic Absorption Spectrophotometer (213.9 nm) until Zn(II) was transported to receiver phase and residue in source phase was gathered. The research result that optimum conditions to transport 3.06 x 10-4 M Zn(II) was at pH 8.5 of source phase, 1.75 x 10-5 M dithizone concentrate at membrane phase, 0.06 M EDTA concentrate at pH 6 in receiver phase and 3 hours transport time with Zn(II) percentage which was transported to receiver phase 93% and residue in source phase do not detect. Keywords: transport Zn(II), bulk liquid membrane, dithizone


2014 ◽  
Vol 113 (11) ◽  
Author(s):  
T. H. Hui ◽  
Z. L. Zhou ◽  
J. Qian ◽  
Y. Lin ◽  
A. H. W. Ngan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document