Myogenic Differentiation of ASCs Using Biochemical and Biophysical Induction

Author(s):  
Pinar Yilgor Huri ◽  
Justin Morrissette-McAlmon ◽  
Warren L. Grayson
2021 ◽  
Vol 10 (4) ◽  
pp. 426-432
Author(s):  
Moon Sung Kang ◽  
Jeon Il Kang ◽  
Phuong Le Thi ◽  
Kyung Min Park ◽  
Suck Won Hong ◽  
...  

2021 ◽  
Vol 7 (11) ◽  
pp. eabe9446 ◽  
Author(s):  
Mark J. Mondrinos ◽  
Farid Alisafaei ◽  
Alex Y. Yi ◽  
Hossein Ahmadzadeh ◽  
Insu Lee ◽  
...  

Here, we present an approach to model and adapt the mechanical regulation of morphogenesis that uses contractile cells as sculptors of engineered tissue anisotropy in vitro. Our method uses heterobifunctional cross-linkers to create mechanical boundary constraints that guide surface-directed sculpting of cell-laden extracellular matrix hydrogel constructs. Using this approach, we engineered linearly aligned tissues with structural and mechanical anisotropy. A multiscale in silico model of the sculpting process was developed to reveal that cell contractility increases as a function of principal stress polarization in anisotropic tissues. We also show that the anisotropic biophysical microenvironment of linearly aligned tissues potentiates soluble factor-mediated tenogenic and myogenic differentiation of mesenchymal stem cells. The application of our method is demonstrated by (i) skeletal muscle arrays to screen therapeutic modulators of acute oxidative injury and (ii) a 3D microphysiological model of lung cancer cachexia to study inflammatory and oxidative muscle injury induced by tumor-derived signals.


2021 ◽  
Vol 22 (16) ◽  
pp. 8376
Author(s):  
Stig Skrivergaard ◽  
Martin Krøyer Rasmussen ◽  
Margrethe Therkildsen ◽  
Jette Feveile Young

Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted science have still not been investigated in academia. In this study, we investigated if bovine satellite cells with the ability to proliferate and undergo myogenic differentiation could be isolated after extended tissue storage, for the purpose of increasing the practicality for cultured meat production. Proliferation of bovine satellite cells isolated on the day of arrival or after 2 and 5 days of tissue storage were analyzed by metabolic and DNA-based assays, while their myogenic characteristics were investigated using RT-qPCR and immunofluorescence. Extended tissue storage up to 5 days did not negatively affect proliferation nor the ability to undergo fusion and create myosin heavy chain-positive myotubes. The expression patterns of myogenic and muscle-specific genes were also not affected after tissue storage. In fact, the data indicated a positive trend in terms of myogenic potential after tissue storage, although it was non-significant. These results suggest that the timeframe of which viable myogenic satellite cells can be isolated and used for cultured meat production can be greatly extended by proper tissue storage.


1992 ◽  
Vol 65 (4) ◽  
pp. 519-522 ◽  
Author(s):  
G Nicoletti ◽  
C De Giovanni ◽  
L Landuzzi ◽  
G Simone ◽  
P Rocchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document