myogenic differentiation
Recently Published Documents


TOTAL DOCUMENTS

1369
(FIVE YEARS 365)

H-INDEX

87
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Lea Melzener ◽  
Shijie Ding ◽  
Rui Hueber ◽  
Tobias Messmer ◽  
Guanghong Zhou ◽  
...  

Background: Cultured meat is a promising new field with the potential for considerable environmental and animal welfare benefits. One technological approach to cultured meat production utilises the proliferative and differentiative capacity of muscle-derived satellite cells (SCs) to produce large volumes of cultured muscle tissue from small biopsies of donor animals. Differing genotypes between cattle breeds lead to predictable phenotypic traits, resulting in breeds being favoured for their respective meat or milk production characteristics in the livestock industry. However, whilst these breeds show significant differences in muscle growth, it is unclear whether the physiological differences observed between them in vivo are reflected in differences in SC behaviour in vitro, particularly with respect to proliferation, differentiation and cellular longevity, and hence whether particular breeds might represent preferred SC donors for a cultured beef bioprocess. Results: Comparing SCs isolated from five breeds (Belgian Blue, Holstein Friesian, Galloway, Limousin and Simmental), we found that the proliferation rates were largely unaffected by the donor breed. In contrast, potentially meaningful differences were observed in the kinetics and extent of myogenic differentiation. Furthermore, whilst differentiation dropped for all breeds with increasing population doublings (PDs), SCs from Belgian Blue and Limousin cattle showed significantly longer retention of differentiation capacity over long-term passaging. Conclusion: SCs from all breeds were able to proliferate and differentiate, although Limousin and (particularly) Belgian Blue cattle, both breeds commonly used for traditional meat production, may represent preferred donors for cultured beef production.


2022 ◽  
Author(s):  
Abigail J. Clevenger ◽  
Logan Z. Crawford ◽  
Dillon Noltensmeyer ◽  
Hamed Babaei ◽  
Samuel B. Mabbott ◽  
...  

Peristalsis is a nuanced mechanical stimulus comprised of multi-axial strain (radial and axial strain) and shear stress. Forces associated with peristalsis regulate diverse biological functions including digestion, reproductive function, and urine dynamics. Given the central role peristalsis plays in physiology and pathophysiology, we were motivated to design a bioreactor capable of holistically mimicking peristalsis. We engineered a novel rotating screw-drive based design combined with a peristaltic pump, in order to deliver multiaxial strain and concurrent shear stress to a biocompatible polydimethylsiloxane (PDMS) membrane “wall”. Radial indentation and rotation of the screw drive against the wall demonstrated multi-axial strain evaluated via finite element modeling. Experimental measurements of strain using piezoelectric strain resistors were in close alignment of model-predicted values (15.9 ± 4.2% vs. 15.2% predicted). Modeling of shear stress on the ‘wall’ indicated a uniform velocity profile and a moderate shear stress of 0.4 Pa. Human mesenchymal stem cells (hMSCs) seeded on the PDMS ‘wall’ and stimulated with peristalsis demonstrated dramatic changes in actin filament alignment, proliferation, and nuclear morphology compared to static controls, perfusion or strain, indicating that hMSCs sensed and responded to peristalsis uniquely. Lastly, significant differences were observed in gene expression patterns of Calponin, Caldesmon, Smooth Muscle Actin, and Transgelin, corroborating the propensity of hMSCs toward myogenic differentiation in response to peristalsis. Collectively, our data suggests that the peristalsis bioreactor is capable of generating concurrent multi-axial strain and shear stress on a ‘wall’. hMSCs experience peristalsis differently than perfusion or strain, resulting in changes in proliferation, actin fiber organization, smooth muscle actin expression, and genetic markers of differentiation. The peristalsis bioreactor device has broad utility in the study of development and disease in several organ systems.


2022 ◽  
Author(s):  
Aijia Cai ◽  
Paul Schneider ◽  
Zeng-Ming Zheng ◽  
Justus P. Beier ◽  
Marcus Himmler ◽  
...  

Abstract Primary myoblasts (Mb) and adipose derived mesenchymal stromal cells (ADSC) can be co-cultured and myogenically differentiated in the process of skeletal muscle tissue engineering. Electrospun composite nanofiber scaffolds represent suitable matrices for tissue engineering of skeletal muscle, combining biocompatibility and stability. Although growth differentiation factor 11 (GDF11) has been proposed as a rejuvenating circulating factor, restoring skeletal muscle function in aging mice, some studies have also described a harming effect of GDF11.Therefore the aim of the study was to analyze the effect of GDF11 on co-cultures of Mb and ADSC on poly-ε-caprolacton (PCL)-collagen I-polyethylene oxide (PEO)-nanofibers.Human Mb were co-cultured with ADSC two-dimensionally (2D) as monolayers or three-dimensionally (3D) on aligned PCL-collagen I-PEO-nanofibers. Differentiation media were either serum-free with or without GDF11, or serum containing as in a conventional differentiation medium. Cell viability was higher after conventional myogenic differentiation compared to serum-free and serum-free + GDF11 differentiation as was creatine kinase activity. Immunofluorescence staining showed myosin heavy chain expression in all groups after 28 days of differentiation. Gene expression of myosin heavy chain (MYH2) increased after serum-free + GDF11 stimulation compared to serum-free stimulation alone. The results of this study show that PCL-collagen I-PEO-nanofibers represent a suitable matrix for 3D myogenic differentiation of Mb and ADSC. In this context, GDF11 seems to promote myogenic differentiation of Mb and ADSC co-cultures compared to serum-free differentiation without any evidence of a harming effect.


2022 ◽  
Vol 12 ◽  
Author(s):  
Lifang Ye ◽  
Yu Zuo ◽  
Fang Chen ◽  
Qinglin Peng ◽  
Xin Lu ◽  
...  

Immune-mediated necrotizing myopathy (IMNM) is characterized by manifestation of myonecrosis and regeneration of muscle fibers; however, the underlying pathogenesis remains unclear. This study aimed to investigate the role and mechanism of miR-18a-3p and its target RNA-binding protein HuR in IMNM. HuR and miR-18a-3p levels were detected in the skeletal muscles of 18 patients with IMNM using quantitative reverse-transcription real-time polymerase chain reaction (qRT-PCR) and western blotting analysis. Human myoblasts were transfected with small interfering RNA targeting HuR and miR-18a-3p mimic or inhibitor. Myogenic differentiation markers, myogenin and myosin heavy chain, were analyzed by qRT-PCR, western blotting analysis, and immunofluorescence staining. The results showed that miR-18a-3p was upregulated (p=0.0002), whereas HuR was downregulated (p=0.002) in the skeletal muscles of patients with IMNM. The expression of miR-18a-3p in patients with IMNM was negatively correlated with those of HuR (r = -0.512, p = 0.029). We also found that disease activity was positively correlated with HuR expression (r = 0.576, p = 0.012) but muscle activity was negatively correlated with miR-18a-3p expression (r = -0.550, p = 0.017). Besides, bioinformatics analysis and dual-luciferase reporter assays suggested that miR-18a-3p could directly target HuR. Cellular experiments showed that overexpression of miR-18a-3p inhibited myogenic differentiation by targeting HuR, whereas inhibition of miR-18a-3p led to opposite results. Therefore, miR-18a-3p and its target protein HuR may be responsible for modulating the myogenic process in IMNM and can thus be therapeutic targets for the same.


2021 ◽  
Vol 23 (1) ◽  
pp. 260
Author(s):  
Megane Beldjilali Labro ◽  
Rachid Jellali ◽  
Alexander David Brown ◽  
Alejandro Garcia Garcia ◽  
Augustin Lerebours ◽  
...  

The development of new, viable, and functional engineered tissue is a complex and challenging task. Skeletal muscle constructs have specific requirements as cells are sensitive to the stiffness, geometry of the materials, and biological micro-environment. The aim of this study was thus to design and characterize a multi-scale scaffold and to evaluate it regarding the differentiation process of C2C12 skeletal myoblasts. The significance of the work lies in the microfabrication of lines of polyethylene glycol, on poly(-caprolactone) nanofiber sheets obtained using the electrospinning process, coated or not with gold nanoparticles to act as a potential substrate for electrical stimulation. The differentiation of C2C12 cells was studied over a period of seven days and quantified through both expression of specific genes, and analysis of the myotubes’ alignment and length using confocal microscopy. We demonstrated that our multiscale bio-construct presented tunable mechanical properties and supported the different stages skeletal muscle,as well as improving the parallel orientation of the myotubes with a variation of less than 15°. These scaffolds showed the ability of sustained myogenic differentiation by enhancing the organization of reconstructed skeletal muscle. Moreover, they may be suitable for applications in mechanical and electrical stimulation to mimic the muscle’s physiological functions.


Author(s):  
Ming-Ming Chen ◽  
Yi-Ping Zhao ◽  
Yue Zhao ◽  
Shou-Long Deng ◽  
Kun Yu

Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.


2021 ◽  
Vol 23 (1) ◽  
pp. 108
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of heterogeneous nuclear ribonucleoprotein K (hnRNPK) for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level. The hnRNPK-binding region of Myoparr was required to repress myogenin expression. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays lncRNA-associated and -independent multiple roles during myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


2021 ◽  
Vol 29 ◽  
Author(s):  
Hermann Zbinden-Foncea ◽  
Mauricio Castro-Sepulveda ◽  
Jocelyn Fuentes ◽  
Hernan Speisky

: Loss of skeletal muscle (SkM) quality is associated with different clinical conditions such as aging, diabetes, obesity, cancer and heart failure. Nutritional research has focused on identifying naturally occurring molecules that mitigate the loss of SkM quality induced by a pathology or syndrome. In this context, although few human studies have been conducted, Epicatechin (Epi) is a prime candidate that may positively affect SkM quality by its potential ability to mitigate muscle mass loss. This seems to be a consequence of its antioxidant, anti-inflammatory properties, and its stimulation of mitochondrial biogenesis to increase myogenic differentiation, as well as its modulation of key proteins involved in SkM structure, function, metabolism, and growth. In conclusion, the Epi could prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases, however, studies in humans are needed.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3475
Author(s):  
Robert L. Murray ◽  
Wei Zhang ◽  
Jianan Liu ◽  
Jason Cooper ◽  
Alex Mitchell ◽  
...  

Satellite cells (SC) are a population of muscle resident stem cells that are responsible for postnatal muscle growth and repair. With investigation into the genomic regulation of SC fate, the role of the epigenome in governing SC myogenesis is becoming clearer. Histone deacetylase (HDAC) inhibitors have been demonstrated to be effective at enhancing the myogenic program of SC, but their role in altering the epigenetic landscape of SC remains undetermined. Our objective was to determine how an HDAC inhibitor, butyrate, promotes myogenic differentiation. SC from tributyrin treated neonatal piglets showed a decrease relative to SC from control animals in the expression of enhance of zeste homologue-2 (EZH2), a chromatin modifier, ex vivo. Chromatin Immunoprecipitation-Sequencing (ChIP-Seq) analysis of SC isolated from tributyrin treated pigs showed a global reduction of the tri-methylation of lysine 27 of histone H3 (H3K27me3) repressive chromatin mark. To determine if reductions in EZH2 was the primary mechanism through which butyrate affects SC behavior, SC were transfected with siRNA targeting EZH2, treated with 0.5 mM butyrate, or both. Treatment with butyrate reduced paired-box-7 (Pax7) and myogenic differentiation-1 (MyoD) gene expression, while siRNA caused reductions in EZH2 had no effect on their expression. EZH2 depletion did result in an increase in differentiating SC, but not in myotube hypertrophy. These results indicate that while EZH2 reduction may force myogenic differentiation, butyrate may operate through a parallel mechanism to enhance the myogenic program.


2021 ◽  
Author(s):  
Soma Tripathi ◽  
Tetsuaki Miyake ◽  
Jonathan Kelebeev ◽  
John C. McDermott

Hippo signaling in Drosophila and mammals is prominent in regulating cell proliferation, death and differentiation. Hippo signaling effectors (YAP/TAZ) exhibit crosstalk with transforming growth factor-β (TGF-β)-Smad and Wnt-β-catenin pathways. Previously, we implicated Smad7 and β-catenin in myogenesis. Therefore, we assessed a potential role of TAZ on theSmad7/β-catenin complex in muscle cells. Here, we document functional interactions between Smad7, TAZ and β-catenin in myogenic cells. Ectopic TAZ expression resulted in repression of the muscle-specific creatine kinase muscle (ckm) gene promoter and its corresponding protein level. Depletion of endogenous TAZ enhanced ckm promoter activation. Ectopic TAZ, while potently active on a TEAD reporter (HIP-HOP), repressed myogenin and myod enhancer regions and Myogenin protein level. Additionally, a Wnt/β-catenin readout (TOP flash) demonstrated TAZ inhibition of β-catenin activity. In myoblasts, TAZ is predominantly localized in nuclear speckles, while in differentiation conditions TAZ is hyperphosphorylated at Ser 89 leading to enhanced cytoplasmic sequestration. Finally, live cell imaging indicates that TAZ exhibits properties of liquid-liquid phase separation (LLPS). These observations indicate that TAZ, as an effector of Hippo signaling, supresses the myogenic differentiation machinery.


Sign in / Sign up

Export Citation Format

Share Document