Intravital Microscopy to Study Leukocyte Recruitment In Vivo

Author(s):  
Vanessa Pinho ◽  
Fernanda Matos Coelho ◽  
Gustavo Batista Menezes ◽  
Denise Carmona Cara
1997 ◽  
Vol 3 (S2) ◽  
pp. 323-324
Author(s):  
Michael J. Hickey ◽  
Paul Kubes

Inflammation is a vital process by which the body is able to fight infection and heal wounded tissue. However inappropriate control of inflammation is responsible for a wide range of pathologies (e.g. rheumatoid arthritis, inflammatory bowel disease). One of the hallmark features of inflammation, and one of the key pathogenic mechanisms in inflammatory disorders is leukocyte recruitment. Therefore understanding the molecular mechanisms by which leukocytes travel from the bloodstream to the extravascular tissue is of great importance.Evidence suggests that there is a cascade of complex interactions between leukocytes and endothelium that to be fully understood must be studied on-line rather than using endpoint readouts such as tissue levels of leukocyte enzymes (myeloperoxidase) or histological techniques. A number of laboratories, including our own, have used a technique known as intravital microscopy to directly visualize leukocyte trafficking in individual vessels in a range of tissues, in an attempt to gain a better understanding of the mechanisms of leukocyte recruitment. Intravital microscopy entails microscopic examination of living tissues.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lori N. Eidson ◽  
Qingzeng Gao ◽  
Hongyan Qu ◽  
Daniel S. Kikuchi ◽  
Ana Carolina P. Campos ◽  
...  

AbstractStroke is a multiphasic process involving a direct ischemic brain injury which is then exacerbated by the influx of immune cells into the brain tissue. Activation of brain endothelial cells leads to the expression of adhesion molecules such vascular cell adhesion molecule 1 (VCAM-1) on endothelial cells, further increasing leukocyte recruitment. Polymerase δ-interacting protein 2 (Poldip2) promotes brain vascular inflammation and leukocyte recruitment via unknown mechanisms. This study aimed to define the role of Poldip2 in mediating vascular inflammation and leukocyte recruitment following cerebral ischemia. Cerebral ischemia was induced in Poldip2+/+ and Poldip2+/− mice and brains were isolated and processed for flow cytometry or RT-PCR. Cultured rat brain microvascular endothelial cells were used to investigate the effect of Poldip2 depletion on focal adhesion kinase (FAK)-mediated VCAM-1 induction. Poldip2 depletion in vivo attenuated the infiltration of myeloid cells, inflammatory monocytes/macrophages and decreased the induction of adhesion molecules. Focusing on VCAM-1, we demonstrated mechanistically that FAK activation was a critical intermediary in Poldip2-mediated VCAM-1 induction. In conclusion, Poldip2 is an important mediator of endothelial dysfunction and leukocyte recruitment. Thus, Poldip2 could be a therapeutic target to improve morbidity following ischemic stroke.


2001 ◽  
Vol 194 (2) ◽  
pp. 205-218 ◽  
Author(s):  
Einar E. Eriksson ◽  
Xun Xie ◽  
Joachim Werr ◽  
Peter Thoren ◽  
Lennart Lindbom

In the multistep process of leukocyte extravasation, the mechanisms by which leukocytes establish the initial contact with the endothelium are unclear. In parallel, there is a controversy regarding the role for L-selectin in leukocyte recruitment. Here, using intravital microscopy in the mouse, we investigated leukocyte capture from the free flow directly to the endothelium (primary capture), and capture mediated through interactions with rolling leukocytes (secondary capture) in venules, in cytokine-stimulated arterial vessels, and on atherosclerotic lesions in the aorta. Capture was more prominent in arterial vessels compared with venules. In venules, the incidence of capture increased with increasing vessel diameter and wall shear rate. Secondary capture required a minimum rolling leukocyte flux and contributed by ∼20–50% of total capture in all studied vessel types. In arteries, secondary capture induced formation of clusters and strings of rolling leukocytes. Function inhibition of L-selectin blocked secondary capture and thereby decreased the flux of rolling leukocytes in arterial vessels and in large (>45 μm in diameter), but not small (<45 μm), venules. These findings demonstrate the importance of leukocyte capture from the free flow in vivo. The different impact of blockage of secondary capture in venules of distinct diameter range, rolling flux, and wall shear rate provides explanations for the controversy regarding the role of L-selectin in various situations of leukocyte recruitment. What is more, secondary capture occurs on atherosclerotic lesions, a fact that provides the first evidence for roles of L-selectin in leukocyte accumulation in atherogenesis.


2015 ◽  
Vol 64 ◽  
pp. 246-260 ◽  
Author(s):  
Iván Gómez-Conde ◽  
Susana S. Caetano ◽  
Carlos E. Tadokoro ◽  
David N. Olivieri

2015 ◽  
Vol 12 (6) ◽  
pp. 577-585 ◽  
Author(s):  
Deepak R Chittajallu ◽  
Stefan Florian ◽  
Rainer H Kohler ◽  
Yoshiko Iwamoto ◽  
James D Orth ◽  
...  

2003 ◽  
Vol 285 (5) ◽  
pp. L996-L1005 ◽  
Author(s):  
Rainer Kiefmann ◽  
Kai Heckel ◽  
Martina Dörger ◽  
Sonja Schenkat ◽  
Mechthild Stoeckelhuber ◽  
...  

During systemic inflammation, recruitment and activation of leukocytes in the pulmonary microcirculation may result in a potentially life-threatening acute lung injury. We elucidated the role of the poly(ADP-ribose) synthetase (PARS), a nucleotide-polymerizing enzyme, in the regulation of leukocyte recruitment within the lung with regard to the localization in the pulmonary microcirculation and in correlation to hemodynamics in the respective vascular segments and expression of intercellular adhesion molecule 1 during endotoxemia. Inhibition of PARS by 3-aminobenzamide reduced the endotoxin-induced leukocyte recruitment within pulmonary arterioles, capillaries, and venules in rabbits as quantified by in vivo fluorescence microscopy. Microhemodynamics and thus shear rates in all pulmonary microvascular segments remained constant. Simultaneously, inhibition of PARS with 3-aminobenzamide suppressed the endotoxin-induced adhesion molecules expression as demonstrated for intercellular adhesion molecule 1 by immunohistochemistry and Western blot analysis. We confirmed this result with the use of PARS knockout mice. The inhibitory effect of 3-aminobenzamide on leukocyte recruitment was associated with a reduction of pulmonary capillary leakage and edema formation. We first provide evidence that PARS activation mediates the leukocyte sequestration in pulmonary microvessels through upregulation of adhesion molecules. As reactive oxygen species released from leukocyte are supposed to cause an upregulation of adhesion molecules we conclude that PARS inhibition contributes to termination of this vicious cycle and inhibits the inflammatory process.


Sign in / Sign up

Export Citation Format

Share Document