Testicular Tissue Grafting and Male Germ Cell Transplantation

Author(s):  
Jose R. Rodriguez-Sosa ◽  
Lin Tang ◽  
Ina Dobrinski
2006 ◽  
Vol 18 (2) ◽  
pp. 13 ◽  
Author(s):  
J. R. Hill ◽  
I. Dobrinski

Male germ cell transplantation is a powerful approach to study the control of spermatogenesis with the ultimate goal to enhance or suppress male fertility. In livestock animals, applications can be expanded to provide an alternative method of transgenesis and an alternative means of artificial insemination (AI). The transplantation technique uses testis stem cells, harvested from the donor animal. These donor stem cells are injected into seminiferous tubules, migrate from the lumen to relocate to the basement membrane and, amazingly, they can retain the capability to produce donor sperm in their new host. Adaptation of the mouse technique for livestock is progressing, with gradual gains in efficiency. Germ cell transfer in goats has produced offspring, but not yet in cattle and pigs. In goats and pigs, the applications of germ cell transplantation are mainly in facilitating transgenic animal production. In cattle, successful male germ cell transfer could create an alternative to AI in areas where it is impractical. Large-scale culture of testis stem cells would enhance the use of elite bulls by providing a renewable source of stem cells for transfer. Although still in a developmental state, germ cell transplantation is an emerging technology with the potential to create new opportunities in livestock production.


2003 ◽  
Vol 68 (3) ◽  
pp. 961-967 ◽  
Author(s):  
Zhen Zhang ◽  
Marilyn B. Renfree ◽  
Roger V. Short

2001 ◽  
Vol 13 (8) ◽  
pp. 609 ◽  
Author(s):  
Fang-Xu Jiang

Male germ cell transplantation is a novel technique in which donor male stem germ cells are surgically transferred to the seminiferous tubules of a recipient testis by direct injection or via the rete testis or efferent duct. All germ cells that are destined to become stem spermatogonia are defined as male stem germ cells, including primordial germ cells from the gonadal ridges, and gonocytes and stem spermatogonia from the testis, all of which are transplantable and capable of undergoing normal spermatogenesis. Xenotransplantation of male germ cells from one species into the testis of another species, including human testicular cells in the mouse, has so far proved to be unsuccessful. However, the immunodeficient mouse testis can support rat spermatogenesis and produce apparently normal rat spermatozoa. The underlying mechanisms remain elusive. The present mini-review will focus on the importance of stem spermatogonial transplantation for testicular stem cell biology and discuss the likelihood of immune rejection after transplantation, which may limit the success of all male germ cell transplantation.


2004 ◽  
Vol 16 (9) ◽  
pp. 22
Author(s):  
S. Schlatt

The testis contains undifferentiated spermatogonia and is therefore the only adult organ populated with proliferating germline cells. Whereas the biology of these cells is quite well understood in rodents, their modes of mitotic expansion and differentiation are poorly understood in primates. The existence of these cells offers clinically relevant options for preservation and restoration of male fertility. New approaches based on male germ cell transplantation and testicular tissue grafting can be applied to generate a limited number of sperm and could therefore be considered as important new avenues applicable to a variety of disciplines like animal conservation, genetic germline modification or restoration of fertility in oncological patients. In principle, germ cell transplantation presents a removal of the stem cell from the donor's niche and a transfer into the niche of a recipient. Grafting can be considered as a transplantation of the stem cell in conjunction with its niche. Germ cell transplantation of human spermatogonia into mouse testes revealed that the stem cells survive and expand but are not able to differentiate and complete spermatogenesis. We have developed an approach to infuse germ cells into monkey and human testes and showed that germ cell transplantation is feasible as an autologous approach in primates. Furthermore, we applied germ cell transplantation in the monkey model mimicking a gonadal protection strategy for oncological patients. Ectopic xenografting of testicular tissue was applied to generate fertile sperm from a variety of species. Newborn testicular tissue was grafted into the back skin of immunodeficient mice and developed up to qualitatively complete spermatogenesis. The rapid progress in the development of novel experimental strategies to generate sperm from cryopreserved spermatogonial stem cells or immature testicular tissue will lead to many new options for germline manipulation and fertility preservation.


Sign in / Sign up

Export Citation Format

Share Document