ContrattiPubblici.org, a Semantic Knowledge Graph on Public Procurement Information

Author(s):  
Giuseppe Futia ◽  
Federico Morando ◽  
Alessio Melandri ◽  
Lorenzo Canova ◽  
Francesco Ruggiero
IEEE Software ◽  
2020 ◽  
Vol 37 (2) ◽  
pp. 89-94
Author(s):  
Bob van Luijt ◽  
Micha Verhagen

Author(s):  
Lars Vogt ◽  
Sören Auer ◽  
Thomas Bartolomaeus ◽  
Pier Luigi Buttigieg ◽  
Peter Grobe ◽  
...  

We would like to present FAIR Research Data: Semantic Knowledge Graph Infrastructure for the Life Sciences (in short, FAIR.ReD), a project initiative that is currently being evaluated for funding. FAIR.ReD is a software environment for developing data management solutions according to the FAIR (Findable, Accessible, Interoperable, Reusable; Wilkinson et al. 2016) data principles. It utilizes what we call a Data Sea Storage, which employs the idea of Data Lakes to decouple data storage from data access but modifies it by storing data in a semantically structured format as either semantic graphs or semantic tables, instead of storing them in their native form. Storage follows a top-down approach, resulting in a standardized storage model, which allows sharing data across all FAIR.ReD Knowledge Graph Applications (KGAs) connected to the same Sea, with newly developed KGAs having automatically access to all contents in the Sea. In contrast access and export of data follows a bottom-up approach that allows the specification of additional data models to meet the varying domain-specific and programmatic needs for accessing structured data. The FAIR.ReD engine enables bidirectional data conversion between the two storage models and any additional data model, which will substantially reduce conversion workload for data-rich institutes (Fig. 1). Moreover, with the possibility to store data in semantic tables, FAIR.ReD provides high performance storage for incoming data streams such as sensory data. FAIR.ReD KGAs are modularly organized. Modules can be edited using the FAIR.ReD editor and combined to form coherent KGAs. The editor allows domain experts to develop their own modules and KGAs without any programming experience required, thus also allowing smaller projects and individual researchers to build their own FAIR data management solution. Contents from FAIR.ReD KGAs can be published under a Creative Commons license as documents, micropublications, or nanopublications, each receiving their own DOI. A publication-life-cycle is implemented in FAIR.ReD and allows updating published contents for corrections or additions without overwriting the originally published version. Together with the fact that data and metadata are semantically structured and machine-readable, all contents from FAIR.ReD KGAs will comply with the FAIR Guiding Principles. Due to all FAIR.Red KGAs providing access to semantic knowledge graphs in both a human-readable and a machine-readable version, FAIR.ReD seamlessly integrates the complex RDF (Resource Description Framework) world with a more intuitively comprehensible presentation of data in form of data entry forms, charts, and tables. Guided by use cases, the FAIR.ReD environment will be developed using semantic programming where the source code of an application is stored in its own ontology. The set of source code ontologies of a KGA and its modules provides the steering logic for running the KGA. With this clear separation of steering logic from interpretation logic, semantic programming follows the idea of separating main layers of an application, analog to the separation of interpretation logic and presentation logic. Each KGA and module is specified exactly in this way and their source code ontologies stored in the Data Sea. Thus, all data and metadata are semantically transparent and so is the data management application itself, which substantially improves their sustainability on all levels of data processing and storing.


Semantic Web ◽  
2021 ◽  
pp. 1-27
Author(s):  
Ahmet Soylu ◽  
Oscar Corcho ◽  
Brian Elvesæter ◽  
Carlos Badenes-Olmedo ◽  
Tom Blount ◽  
...  

Public procurement is a large market affecting almost every organisation and individual; therefore, governments need to ensure its efficiency, transparency, and accountability, while creating healthy, competitive, and vibrant economies. In this context, open data initiatives and integration of data from multiple sources across national borders could transform the procurement market by such as lowering the barriers of entry for smaller suppliers and encouraging healthier competition, in particular by enabling cross-border bids. Increasingly more open data is published in the public sector; however, these are created and maintained in siloes and are not straightforward to reuse or maintain because of technical heterogeneity, lack of quality, insufficient metadata, or missing links to related domains. To this end, we developed an open linked data platform, called TheyBuyForYou, consisting of a set of modular APIs and ontologies to publish, curate, integrate, analyse, and visualise an EU-wide, cross-border, and cross-lingual procurement knowledge graph. We developed advanced tools and services on top of the knowledge graph for anomaly detection, cross-lingual document search, and data storytelling. This article describes the TheyBuyForYou platform and knowledge graph, reports their adoption by different stakeholders and challenges and experiences we went through while creating them, and demonstrates the usefulness of Semantic Web and Linked Data technologies for enhancing public procurement.


Sign in / Sign up

Export Citation Format

Share Document