Application Research of Process Capability Analysis in Manufacturing Quality Control

Author(s):  
Yanming Yang
2020 ◽  
Vol 9 (1) ◽  
pp. 87-97
Author(s):  
Nathasa Erdya Kristy ◽  
Mustafid Mustafid ◽  
Sudarno Sudarno

In quality assurance of hexagonal paving block products, quality control is needed so the products that produced are in accordance with the specified standards. Quality control carried out involves two interconnected quality characteristics, that is thickness and weight of hexagonal paving blocks, so multivariate control chart is used. Improved Generalized Variance control chart is a tool used to control process variability in multivariate manner. Variability needs to be controlled because of in a production process, sometimes there are variabilities that caused by engine problems, operator errors, and deffect in raw materials that affect the process. The purpose of this study is to apply Improved Generalized Variance control chart in controlling the quality of hexagonal paving block products and calculating the capability of production process to meet the standards. Based on the assumption of multivariate normal distribution test, it can be seen that the data of quality characteristics of hexagonal paving blocks have multivariate distribution. While based on the correlation test between variables it can be concluded that the characteristics of the quality of thickness and weight correlate with each other. The result of the control using these control chart shows that the process is statistically in control. The results of process capability analysis show that the production process has been running according to the standard because the process capability index value is generated using a weighting of 0.5 for each quality characteristic that is 1.01517. Keywords: Paving Block, Quality Control, Variability, Improved Generalized Variance, Process Capability Analysis


2011 ◽  
Vol 314-316 ◽  
pp. 2443-2448
Author(s):  
Wen Hua Shi ◽  
Chun Liang Chen ◽  
Jin Tao Niu

Abstract: Formerly, the research to the assembly process of gear was commonly based on the normal assumption. However, in practice the clearance between gears in mesh does not necessarily obey normal distribution. Based on the mentioned above, the non-normal process capability analysis is fulfilled with the Box-Cox transformation and the data collected in the workshop. The corresponding result is compared with the directly obtained result, which validates the rationality and effectiveness.


2010 ◽  
Vol 3 (S1) ◽  
pp. 531-534
Author(s):  
Maja Rujnić-Sokele ◽  
Mladen Šercer ◽  
Damir Godec

Author(s):  
Stoyan Stoyanov ◽  
Ying Kit Tang ◽  
Chris Bailey ◽  
Robert Evans ◽  
Silvia Marson ◽  
...  

2021 ◽  
Vol 25 (8) ◽  
pp. 1477-1482
Author(s):  
O.F. Odeyinka ◽  
F.O. Ogunwolu ◽  
O.P. Popoola ◽  
T.O. Oyedokun

Process capability analysis combines statistical tools and control charts with good engineering judgment to interpret and analyze the data representing a process. This work analyzes the process capability of a polypropylene bag producing company. The case study organization uses two plants for production and data was collected over a period of nine months for this study. Analysis showed that the output spread of plant 1 was greater than the specification interval spread which implies poor capability. There are non-conforming parts below the Lower Specification Limit (LSL: 500,000 metres) and above the Upper Specification Limit (USL: 600,000 metres) and that the output requires improvement. Similarly, the capability analysis of plant 2 shows that the overall output spread is greater than the specification interval spread (poor capability). The output centre in the specification and overall interval are vertically aligned, thus specifying that the output from plant 2 is also process centered and requires improvement. Recommendations were made to improve the outputs from each production plant.


Sign in / Sign up

Export Citation Format

Share Document