The Arithmetic Structure of the Relative Class Number Formula for Imaginary Fields

Author(s):  
Helmut Hasse
2005 ◽  
Vol 78 (2) ◽  
pp. 227-238 ◽  
Author(s):  
Jaehyun Ahn ◽  
Soyoung Choi ◽  
Hwanyup Jung

AbstractIn this paper, we generalize the Kučera's group-determinant formulae to obtain the real and relative class number formulae of any subfield of cyclotomic function fields with arbitrary conductor in the form of a product of determinants. From these formulae, we generalize the relative class number formula of Rosen and Bae-Kang and obtain analogous results of Tsumura and Hirabayashi for an intermediate field in the tower of cyclotomic function fields with prime power conductor.


1991 ◽  
Vol 124 ◽  
pp. 133-144 ◽  
Author(s):  
Masanori Morishita

As an interpretation and a generalization of Gauss’ genus theory on binary quadratic forms in the language of arithmetic of algebraic tori, Ono [02] established an equality between a kind of “Euler number E(K/k)” for a finite Galois extension K/k of algebraic number fields and other arithmetical invariants associated to K/k. His proof depended on his Tamagawa number formula [01] and Shyr’s formula [Sh] which follows from the analytic class number formula of a torus. Later, two direct proofs were given by Katayama [K] and Sasaki [Sa].


2008 ◽  
Vol 17 (10) ◽  
pp. 1199-1221 ◽  
Author(s):  
TERUHISA KADOKAMI ◽  
YASUSHI MIZUSAWA

Based on the analogy between links and primes, we present an analogue of the Iwasawa's class number formula in a Zp-extension for the p-homology groups of pn-fold cyclic covers of a link in a rational homology 3-sphere. We also describe the associated Iwasawa invariants precisely for some examples and discuss analogies with the number field case.


1994 ◽  
Vol 66 (3) ◽  
pp. 245-260 ◽  
Author(s):  
Franz Lemmermeyer

2019 ◽  
Vol 5 (1) ◽  
pp. 495-498
Author(s):  
Özen Özer

AbstractDifferent types of number theories such as elementary number theory, algebraic number theory and computational number theory; algebra; cryptology; security and also other scientific fields like artificial intelligence use applications of quadratic fields. Quadratic fields can be separated into two parts such as imaginary quadratic fields and real quadratic fields. To work or determine the structure of real quadratic fields is more difficult than the imaginary one.The Dirichlet class number formula is defined as a special case of a more general class number formula satisfying any types of number field. It includes regulator, ℒ-function, Dedekind zeta function and discriminant for the field. The Dirichlet’s class number h(d) formula in real quadratic fields claims that we have h\left(d \right).log {\varepsilon _d} = \sqrt {\Delta} {\scr L} \left({1,\;{\chi _d}}\right) for positive d > 0 and the fundamental unit ɛd of {\rm{\mathbb Q}}\left({\sqrt d} \right) . It is seen that discriminant, ℒ-function and fundamental unit ɛd are significant and necessary tools for determining the structure of real quadratic fields.The focus of this paper is to determine structure of some special real quadratic fields for d > 0 and d ≡ 2,3 (mod4). In this paper, we provide a handy technique so as to calculate particular continued fraction expansion of integral basis element wd, fundamental unit ɛd, and so on for such real quadratic number fields. In this paper, we get fascinating results in the development of real quadratic fields.


2012 ◽  
Vol 08 (05) ◽  
pp. 1257-1270
Author(s):  
M. A. GÓMEZ-MOLLEDA ◽  
JOAN-C. LARIO

We give formulas for the class numbers of bicyclic biquadratic number fields containing an imaginary quadratic field of class number one. The class number is expressed as a finite sum in terms of the basic Jacobi elliptic functions, playing a similar role as the trigonometric sine in Dirichlet classical class number formula.


2014 ◽  
Vol 163 (4) ◽  
pp. 371-377 ◽  
Author(s):  
Debopam Chakraborty ◽  
Anupam Saikia

Sign in / Sign up

Export Citation Format

Share Document