Don’t Rule Out Simple Models Prematurely: A Large Scale Benchmark Comparing Linear and Non-linear Classifiers in OpenML

Author(s):  
Benjamin Strang ◽  
Peter van der Putten ◽  
Jan N. van Rijn ◽  
Frank Hutter
2011 ◽  
Vol 418 (1) ◽  
pp. 214-229 ◽  
Author(s):  
Marco Baldi ◽  
Valeria Pettorino ◽  
Luca Amendola ◽  
Christof Wetterich

2016 ◽  
Author(s):  
Leila Arras ◽  
Franziska Horn ◽  
Grégoire Montavon ◽  
Klaus-Robert Müller ◽  
Wojciech Samek

2002 ◽  
Author(s):  
BART G VAN BLOEMEN WAANDERS ◽  
ROSCOE A BARTLETT ◽  
KEVIN R LONG ◽  
PAUL T BOGGS ◽  
ANDREW G SALINGER

2018 ◽  
Vol 49 (6) ◽  
pp. 1788-1803 ◽  
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Arezoo Ahmadian ◽  
Mohammad Valipour

Abstract In this study, to reflect the effect of large-scale climate signals on runoff, these indices are accompanied with rainfall (the most effective local factor in runoff) as the inputs of the hybrid model. Where one-year in advance forecasting of reservoir inflows can provide data to have an optimal reservoir operation, reports show we still need more accurate models which include all effective parameters to have more forecasting accuracy than traditional linear models (ARMA and ARIMA). Thus, hybridization of models was employed for improving the accuracy of flow forecasting. Moreover, various forecasters including large-scale climate signals were tested to promote forecasting. This paper focuses on testing MARMA-NARX hybrid model to enhance the accuracy of monthly inflow forecasts. Since the inflow in different periods of the year has in linear and non-linear trends, the hybrid model is proposed as a means of combining linear model, monthly autoregressive moving average (MARMA), and non-linear model, nonlinear autoregressive model with exogenous (NARX) inputs to upgrade the accuracy of flow forecasting. The results of the study showed enhanced forecasting accuracy through using the hybrid model.


Sign in / Sign up

Export Citation Format

Share Document