The Effect of Load Ratio on the Fatigue Crack Growth Rate of Type 304 Stainless Steels in Air and High Temperature Deaerated Water at 482 °F

Author(s):  
D. J. Paraventi ◽  
C. M. Brown ◽  
L. B. O’Brien ◽  
B. A. McGraw
2000 ◽  
Vol 123 (2) ◽  
pp. 166-172 ◽  
Author(s):  
M. Itatani ◽  
M. Asano ◽  
M. Kikuchi ◽  
S. Suzuki ◽  
K. Iida,

Fatigue crack growth data obtained in the simulated BWR water environment were analyzed to establish a formula for reference fatigue crack growth rate (FCGR) of austenitic stainless steels in BWR water. The effects of material, mechanical and environmental factors were taken into the reference curve, which was expressed as: da/dN=8.17×10−12s˙Tr0.5s˙ΔK3.0/1−R2.121≦ΔK≦50 MPam where da/dN is fatigue crack growth rate in m/cycle, Tr is load rising time in seconds, ΔK is range (double amplitude) of K–value in MPam, and R is stress ratio. Tr=1 s if Tr<1 s, and Tr=1000 s if Tr cannot be defined. ΔK=Kmax−Kmin if R≧0.ΔK=Kmax if R<0.R=Kmin/Kmax. The proposed formula provides conservative FCGR at low stress ratio. Although only a few data show higher FCGR than that by proposed formula at high R, these data are located in a wide scatter range of FCGR and are regarded to be invalid. The proposed formula is going to be introduced in the Japanese Plant Operation and Maintenance Standard.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (8) ◽  
pp. 25-36 ◽  
Author(s):  
P.K. Liaw

Fracture mechanics technology is an effective tool for characterizing the rates of fatigue crack propagation. Generally, fatigue crack growth rate (da/dN) in each loading cycle can be presented as a function of stress intensity range (ΔK), where ΔK = Kmax — Kmin, Kmax and Kmin are the maximum and the minimum stress intensities, respectively. A typical fatigue crack growth rate curve of da/dN versus ΔK can be divided into three regimes, i.e., Stage I (near-threshold), Stage II (Paris), and Stage III (fast) crack growth regions, as shown in Figure 1.Depending on the region of crack growth, fatigue crack growth behavior can be sensitive to microstructure, environment, and loading conditions [e.g., R (load) ratio = Kmin / Kmax]. In the nearthreshold region, fatigue crack growth rates are very slow, ranging from approximately 10−10 to 10−8 m/cycle. In this region, the fatigue crack growth rate curve eventually reaches a threshold stress intensity range, ΔKth, below which the crack would not grow or grow at an extremely slow rate. Typically, the value of ΔKth is operationally defined as the stress intensity range which gives a corresponding crack growth rate of 10−10 m/cycle. In the nearthreshold region, the influence of microstructure, environment, and load ratio on the rates of crack propagation is very significant.


Author(s):  
Yuichiro Nomura ◽  
Katsumi Sakaguchi ◽  
Hiroshi Kanasaki ◽  
Shigeki Suzuki

Reference fatigue crack growth rate curves for austenitic stainless steels in pressurized water reactors (PWR) environments were prescribed in JSME S NA1-2004(1) in Japan. The reference fatigue crack growth curve in PWR environment had been determined as a function of stress intensity factor range, temperature, load rising time and stress ratio. In order to confirm the applicability of the reference fatigue crack growth rate curve under high stress ratio, low rising time and low stress intensity range, fatigue crack propagation tests of austenitic stainless steels 316, 316 weld metal, 304 and 304 weld metal were carried out. It is concluded that the reference fatigue crack growth curve in PWR environment is applicable to predict fatigue crack growth rate of this study test conditions.


Sign in / Sign up

Export Citation Format

Share Document