Performance Analysis of A∗-Based Hop Selection Technique in Opportunistic Networks Through Movement Mobility Models

Author(s):  
Pragya Kuchhal ◽  
Satbir Jain
Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Enrique Hernández-Orallo ◽  
Antonio Armero-Martínez

One of the key factors for the spreading of human infections, such as the COVID-19, is human mobility. There is a huge background of human mobility models developed with the aim of evaluating the performance of mobile computer networks, such as cellular networks, opportunistic networks, etc. In this paper, we propose the use of these models for evaluating the temporal and spatial risk of transmission of the COVID-19 disease. First, we study both pure synthetic model and simulated models based on pedestrian simulators, generated for real urban scenarios such as a square and a subway station. In order to evaluate the risk, two different risks of exposure are defined. The results show that we can obtain not only the temporal risk but also a heat map with the exposure risk in the evaluated scenario. This is particularly interesting for public spaces, where health authorities could make effective risk management plans to reduce the risk of transmission.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Jiayi Huang ◽  
Jie Tang ◽  
Arman Shojaeifard ◽  
Zhen Chen ◽  
Juncheng Hu ◽  
...  

2011 ◽  
Vol 52-54 ◽  
pp. 1253-1257 ◽  
Author(s):  
Ming Xia Yang ◽  
Shuang Xia Han ◽  
Cai Yun Yang ◽  
Lu Zhang ◽  
Dong Fen Ye

Opportunistic networks is one of the newest hot research spots in wireless networks after mobile ad hoc net-works(MANET) and wireless sensor networks(WSN). Mobility model describes mobility manners of nodes. It has been widely used in research on wireless network. This paper firstly introduced, classifies, and compares the current familiar mobility models. Secondly, it classifies, and compares the current familiar mobility models. Next, it was discussed that current research focus on new mobility models, analysis of nodes mobility features, trace strategy, and evaluation of mobility model. Finally, this paper involved what calls for further study.


Author(s):  
Anuj Singal ◽  
Deepak Kedia

<p>In this paper we propose a new MIMO-OFDM model in which we consider various antenna selection techniques like Bulk selection and Per-subcarrier selection etc. with hardware impairments such as non-linearties of amplifiers, quantization noise, phase noise and I-Q imbalance etc. As we know that the transceiver hardware impairments limit the channel capacity and the energy efficiency of MIMO-OFDM system, so we can not neglect the fundamental impacts of these hardware impairments {Kappa  (0.05 0.1)} on the energy efficiency in the high SNR domain. Therefore we analyze the Energy Efficiency of Bulk and Per-subcarrier antenna selection techniques with or without hardware impairments. It has been observed that the energy efficiency decreases as the value of these hardware impairments increases. As we compared the Bulk antenna selection with the Per-subcarrier antenna selection scheme, the Per-subcarrier antenna selection requires more number of RF (radio frequency) chains and transmits power in comparison to the Bulk selection. Due to this, the Bulk antenna selection technique is more energy efficient than Per-subcarrier antenna selection.</p>


2012 ◽  
Vol 59 (14) ◽  
pp. 28-32 ◽  
Author(s):  
Samina Mansuri ◽  
Hemal Shah ◽  
Yogeshwar Kosta

Sign in / Sign up

Export Citation Format

Share Document