human infections
Recently Published Documents


TOTAL DOCUMENTS

1604
(FIVE YEARS 548)

H-INDEX

84
(FIVE YEARS 12)

2022 ◽  
pp. 1-3
Author(s):  
Freeha Anjum ◽  
Hillary Hale

Zoonoses are human infections or diseases caused by disease spillover from vertebrate animals to people [1]. Spillover is the movement of pathogens from their normal host to a novel species [2]; this can occur through bodily fluids, bites, food, water, or contact with surfaces where infected animals have travelled [3]. Although some zoonoses remain established within populations and primarily affect only one person per spillover (classified as enzootic zoonoses—e.g., rabies), others can be transmitted between people and result in localized, or even global outbreaks [4]. Zoonoses account for over 60% of infectious diseases in humans [4] and can be caused by viruses, parasites, bacteria, or fungi. Of these, viral zoonoses prove to be of greatest detriment to the public on a widespread scale, as they are responsible for numerous epidemics and pandemics, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and the novel coronavirus (COVID-19) [5-7]. Research has also been conducted on different taxonomic orders of species, such as Carnivora — placental animals which obtain nutrients from flesh — and their viral spillover risk [11].


Author(s):  
Haiyan Long ◽  
Ya Hu ◽  
Yu Feng ◽  
Zhiyong Zong

Klebsiella oxytoca complex comprises nine closely-related species causing human infections. We curated genomes labeled Klebsiella (n=14,256) in GenBank and identified 588 belonging to the complex, which were examined for precise species, sequence types, K- and O-antigen types, virulence and antimicrobial resistance genes. The complex and Klebsiella pneumoniae share many K- and O-antigen types. Of the complex, K. oxytoca and Klebsiella michiganensis appear to carry more virulence genes and be more commonly associated with human infections.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Andriy Hrynyshyn ◽  
Manuel Simões ◽  
Anabela Borges

Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 91
Author(s):  
Abdul Rahman Siregar ◽  
Sabine Gärtner ◽  
Jasper Götting ◽  
Philipp Stegen ◽  
Artur Kaul ◽  
...  

Primate simplex viruses, including Herpes simplex viruses 1 and 2, form a group of closely related herpesviruses, which establish latent infections in neurons of their respective host species. While neuropathogenic infections in their natural hosts are rare, zoonotic transmission of Macacine alphaherpesvirus 1 (McHV1) from macaques to humans is associated with severe disease. Human infections with baboon-derived Papiine alphaherpesvirus 2 (PaHV2) have not been reported, although PaHV2 and McHV1 share several biological properties, including neuropathogenicity in mice. The reasons for potential differences in PaHV2 and McHV1 pathogenicity are presently not understood, and answering these questions will require mutagenic analysis. Here, we report the development of a recombinant system, which allows rescue of recombinant PaHV2. In addition, we used recombineering to generate viruses carrying reporter genes (Gaussia luciferase or enhanced green fluorescent protein), which replicate with similar efficiency as wild-type PaHV2. We demonstrate that these viruses can be used to analyze susceptibility of cells to infection and inhibition of infection by neutralizing antibodies and antiviral compounds. In summary, we created a recombinant system for PaHV2, which in the future will be invaluable for molecular analyses of neuropathogenicity of PaHV2.


2022 ◽  
Vol 12 ◽  
Author(s):  
Paula Kurittu ◽  
Banafsheh Khakipoor ◽  
Jari Jalava ◽  
Jari Karhukorpi ◽  
Annamari Heikinheimo

Antimicrobial resistance (AMR) is a growing concern in public health, particularly for the clinically relevant extended-spectrum beta-lactamase (ESBL) and AmpC-producing Enterobacteriaceae. Studies describing ESBL-producing Escherichia coli clinical samples from Finland to the genomic level and investigation of possible zoonotic transmission routes are scarce. This study characterizes ESBL-producing E. coli from clinical samples in Finland using whole genome sequencing (WGS). Comparison is made between animal, food, and environmental sources in Finland to gain insight into potential zoonotic transmission routes and to recognize successful AMR genes, bacterial sequence types (STs), and plasmids. ESBL-producing E. coli isolates (n = 30) obtained from the Eastern Finland healthcare district between 2018 and 2020 underwent WGS and were compared to sequences from non-human and healthy human sources (n = 67) isolated in Finland between 2012 and 2018. A majority of the clinical isolates belonged to ST131 (n = 21; 70%), of which 19 represented O25:H4 and fimH30 allele, and 2 O16:H5 and fimH41 allele. Multidrug resistance was common, and the most common bla gene identified was blaCTX–M–27 (n = 14; 47%) followed by blaCTX–M–15 (n = 10; 33%). blaCTX–M–27 was identified in 13 out of 21 isolates representing ST131, with 12 isolates belonging to a recently discovered international E. coli ST131 C1-M27 subclade. Isolates were found to be genetically distinct from non-human sources with core genome multilocus sequence typing based analysis. Most isolates (n = 26; 87%) possessed multiple replicons, with IncF family plasmids appearing in 27 (90%) and IncI1 in 5 (17%) isolates. IncF[F1:A2:B20] replicon was identified in 11, and IncF[F-:A2:B20] in 4 isolates. The results indicate the ST131-C1-M27 clade gaining prevalence in Europe and provide further evidence of the concerning spread of this globally successful pathogenic clonal group. This study is the first to describe ESBL-producing E. coli in human infections with WGS in Finland and provides important information on global level of the spread of ESBL-producing E. coli belonging to the C1-M27 subclade. The results will help guide public health actions and guide future research.


2021 ◽  
Vol 7 (12) ◽  
pp. 113999-114012
Author(s):  
Sônia dos Santos Toriani ◽  
Eduardo Manoel Pereira ◽  
Daniela Delwing-de Lima ◽  
Therezinha Maria Novais De Oliveira

Between 2007 and 2017, Brazil registered 99,826 outbreaks of foodborne diseases and 0.84% of those were associated with fish meat intake. It is estimated that approximately 56 million infection cases occur worldwide due to raw or undercooked fish meat containing several disease-causing parasites. Hence, this study aimed to review the literature concerning diseases caused by ingestion of contaminated fish meat. Reviews, case reports and epidemiologic studies were searched in Portuguese, Spanish and English in the databases LILACS, Pubmed, Science Direct, SciElo and Scholar Google using as keywords: transmissive diseases, contaminated fish and human infections were used to retrieve papers from 2014 to 2020. Nine papers, including seven reviews, one case report and one case-control study fulfilled inclusion criteria and presented several consequences of contaminated raw or undercooked fish meat ingestion, which ranged from nemathode, bacterial and toxin diseases that may cause gastrointestinal problems to allergic reactions, lung infection, endemic acute myalgia, bacteremia, meningitis and death. Growing fish meat intake in several dishes presents significant health risk due to the pathogenic potential of toxins and parasites that remain when food is consumed raw or undercooked. Tighter sanitary surveillance, population health education, training and sensitization of health professionals in recognizing and notifying cases might contribute to minimize risk.


JCI Insight ◽  
2021 ◽  
Vol 6 (24) ◽  
Author(s):  
Sarah J. Morgan ◽  
Samantha L. Durfey ◽  
Sumedha Ravishankar ◽  
Peter Jorth ◽  
Wendy Ni ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2532
Author(s):  
Abid Javed ◽  
Hugo Villanueva ◽  
Shadikejiang Shataer ◽  
Sara Vasciaveo ◽  
Renos Savva ◽  
...  

Widespread antibiotic resistance has returned attention to bacteriophages as a means of managing bacterial pathogenesis. Synthetic biology approaches to engineer phages have demonstrated genomic editing to broaden natural host ranges, or to optimise microbicidal action. Gram positive pathogens cause serious pastoral animal and human infections that are especially lethal in newborns. Such pathogens are targeted by the obligate lytic phages of the Salasmaviridae and Guelinviridae families. These phages have relatively small ~20 kb linear protein-capped genomes and their compact organisation, relatively few structural elements, and broad host range, are appealing from a phage-engineering standpoint. In this study, we focus on portal proteins, which are core elements for the assembly of such tailed phages. The structures of dodecameric portal complexes from Salasmaviridae phage GA1, which targets Bacillus pumilus, and Guelinviridae phage phiCPV4 that infects Clostridium perfringens, were determined at resolutions of 3.3 Å and 2.9 Å, respectively. Both are found to closely resemble the related phi29 portal protein fold. However, the portal protein of phiCPV4 exhibits interesting differences in the clip domain. These structures provide new insights on structural diversity in Caudovirales portal proteins and will be essential for considerations in phage structural engineering.


Microbiology ◽  
2021 ◽  
Vol 167 (12) ◽  
Author(s):  
S. Araújo ◽  
S. R. Azenha ◽  
I. Henriques ◽  
M. Tacão

Members of Shewanella are ubiquitous in aquatic environments, some of which have been implicated in human infections. The progenitors of antibiotic resistance genes with clinical relevance, such as qnrA genes, have been identified in Shewanella. qnrA code for a pentapeptide repeat protein that protects type II topoisomerases, decreasing susceptibility to quinolones and fluoroquinolones. In this study, 248 genomes of 49 Shewanella species were analysed as well as 33 environmental isolates belonging to 10 Shewanella species. The presence of the qnrA gene was detected in 22.9% of the genomes and 15.2% of the isolates. The gene was more often detected in Shewanella algae , but was also detected in Shewanella carassii , Shewanella chilikensis , Shewanella haliotis and Shewanella indica . The identified genes encoded the previously described variants QnrA3 (in 22 genomes of one species), QnrA2 (eight genomes and three species), QnrA1 (six genomes and two species), QnrA7 (five genomes and two species), QnrA10 (two genomes of one species) and QnrA4 (one genome). In addition, 11 novel variants with 3 to 7 amino acid substitutions were identified (in 13 genomes and one environmental isolate). The presence of this gene appears to be species-specific although within some species several variants were detected. The study presents a previously unknown diversity of qnrA in Shewanella , highlighting the role of this genus as progenitor and reservoir of these genes. Further studies are needed to determine the phenotypes conferred by the new variants and the mechanisms that may mediate the transfer of these genes to new hosts.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2524
Author(s):  
Dongchang He ◽  
Min Gu ◽  
Xiyue Wang ◽  
Xiaoquan Wang ◽  
Gairu Li ◽  
...  

Highly pathogenic (HP) H7N9 avian influenza virus (AIV) emerged in China in 2016. HP H7N9 AIV caused at least 33 human infections and has been circulating in poultry farms continuously since wave 5. The genetic divergence, geographic patterns, and hemagglutinin adaptive and parallel molecular evolution of HP H7N9 AIV in China since 2017 are still unclear. Here, 10 new strains of HP H7N9 AIVs from October 2019 to April 2021 were sequenced. We found that HP H7N9 was primarily circulating in Northern China, particularly in the provinces surrounding the Bohai Sea (Liaoning, Hebei, and Shandong) since wave 6. Of note, HP H7N9 AIV phylogenies exhibit a geographical structure compatible with high levels of local transmission after unidirectional rapid geographical expansion towards the north of China in 2017. In addition, we showed that two major subclades were continually expanding with the viral population size undergoing a sharp increase after 2018 with an obvious seasonal tendency. Notably, the hemagglutinin gene showed signs of parallel evolution and positive selection. Our research sheds light on the current epidemiology, evolution, and diversity of HP H7N9 AIV that can help prevent and control the spreading of HP H7N9 AIV.


Sign in / Sign up

Export Citation Format

Share Document