scholarly journals Towards a Deformable Multi-surface Approach to Ligamentous Spine Models for Predictive Simulation-Based Scoliosis Surgery Planning

Author(s):  
Michel A. Audette ◽  
Jerome Schmid ◽  
Craig Goodmurphy ◽  
Michael Polanco ◽  
Sebastian Bawab ◽  
...  
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4219-4219
Author(s):  
Nicole A Doudican ◽  
Shireen Vali ◽  
Shweta Kapoor ◽  
Anay Talawdekar ◽  
Zeba Sultana ◽  
...  

Abstract Background The unique signature of a patient’s tumor mandates the need to rationally design personalized therapies employing N=1 segmentation conceptually. Repurposing of existing drug agents with validated clinical safety and pharmacokinetics data provides a rapid translational path to clinic which otherwise would require years of development time and associated new chemical risks. By focusing on rationally designed personalized treatment mechanisms, our strategy targets multiple key pathways to address the clinical problem of emergence of single therapy resistance. In order to overcome MM resistance, we have (1) employed predictive simulation modeling based upon patient genetic and environment profiling to design patient context specific combinatorial therapeutic regimens using library of drug agents from across indications with prior clinical data and (2) validating designed therapy ex-vivo in patient derived cell lines. Methods Clinical patient samples were analyzed for chromosome evaluation and molecular cytogenetic analysis by NYU. Using this information, an in silico simulation avatar of the patient was created. To identify effective personalized therapeutics, we focused our study on compounds from the National Center for Advanced Translational Science (NCATS) and other molecularly targeted agents. The predictive simulation based approach from Cellworks provides a comprehensive representation of MM disease physiology incorporating signaling and metabolic networks with an integrated phenotype view. This extensively validated simulation model predicts clinical outcomes with phenotype and bio-marker assays. Hits were shortlisted from over thousand pharmacodynamic dose-response simulation studies using criteria of efficacy and synergy. Computer modeling predicted that therapeutic combination mechanistically targets apoptotic pathways and the combination of the agents provides greater than additive activity. These predictive findings are in the process of being assessed ex vivo and retrospectively validated. Results The analysis detected loss of chromosome 13 signal consistent with monosomy 13 and loss of TP53 signal consistent with deletion of TP53; all other probes contained normal signal patterns. The shortlisted therapeutic combination identified from predictive simulation-based screening was BEZ235 (PI3K/mTOR inhibitor) and ABT-199 (BCL2 inhibitor). IC30 concentrations of the single agents resulted in a 56% inhibition of proliferation and 49% inhibition of viability in predictive simulations. The apoptotic markers CASP3, CASP9, Cleaved-PARP1 and BAK1 increased by 74% (1.75 fold), 132% (2.32 fold), 81% (1.8 fold), 217% (3.17 fold), respectively. The proposed mechanism of action using simulation model identified the p53 deletion as responsible for increased BCL2 activity and levels of activated AKT. Deletion of p53 increased levels of activated AKT via decreases in PTEN and IGFBP3. Hence, a mechanism that targets the PI3K/AKT/mTOR and BCL2 family showed efficacy in the simulation avatar of the patient and are currently being validated ex-vivo in patient cells. Conclusions This study demonstrates and validates simulation approaches and technologies to leverage big data from patient genomic analysis to create a simulation avatar for rational design of personalized therapeutics. This level of personalization, beyond linking point mutations to associated drugs targeting the same mutations, truly incorporates the broad patient tumor signature in translational path forward. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3859-3859
Author(s):  
Nicole A Doudican ◽  
Shireen Vali ◽  
Shweta Kapoor ◽  
Anay Talawdekar ◽  
Zeba Sultana ◽  
...  

Abstract Introduction Development of resistance to single agent therapy is a significant clinical obstacle in the treatment of multiple myeloma (MM). Genetic mutations and the bone marrow micro-environment are major determinants of MM resistance mechanisms. Given the complexity of MM, the need for combinatorial therapeutic regimens targeting multiple biological mechanisms of action is pressing. Repurposing has the advantage of using drugs with known clinical history. Methodology We used a predictive simulation-based approach that models MM disease physiology in plasma cells by integrating and aggregating signaling and metabolic networks across all disease phenotypes. We tested the efficacy of over 50 repurposed molecularly targeted agents both individually and in combination across simulation avatars of the MM cell lines OPM2 and U266. OPM2 harbors mutations in KRAS, CDKN2A/2C, PTEN, RASSF1A and P53, whereas U266’s mutational components include BRAF, CDKN2A, P53, P73, RASSF1A and RB1. These cell lines were used as models because they possess mutations in genes classically known to be involved in myeloma. The predicted activity of novel combinations of existing drug agents was validated in vitro using standard molecular assays. MTT and flow cytometry were used to assess cellular proliferation. Western blotting was used to monitor the combinatorial effects on apoptotic and cellular signaling pathways. Synergy was analyzed using isobologram plots and the Bliss independence model. Results Through simulation modeling, we identified two novel therapeutic regimens for MM using repurposed drugs: (1) AT101 (Bcl2 antagonist) and tesaglitazar (PPAR α/γ agonist) and (2) Ursolic acid (UA, inhibitor of NFκβ) and SP600125 (pan-JNK inhibitor). Simulation predictions showed that combining the IC30 concentrations with respect to viability of AT101 and tesaglitazar reduced proliferation by 40% and viability by 50%. Similarly simulation predictions showed that the combination of the IC30 concentrations of UA and SP600125 reduced proliferation by 50% and viability by 40%. Corroborating our predictive simulation assays, 10 µM tesaglitazar and 2 µM AT101 caused minimal growth inhibition as single agents in OPM2 and U266 MM cell lines. Growth inhibition in these cell lines is synergistically enhanced when the drugs are used in combination, reducing cellular viability by 88% and 77% in OPM2 and U266 cells, respectively. Similarly, proliferation was reduced by 34% with 7.5 μM UA and 25% with 10 μM SP600125 in OPM2 cells. When used in combination, cellular proliferation was synergistically reduced by 64%. In addition, isobologram analysis predicted synergy of lowered doses of the drugs in combination. Both combinations synergistically inhibited proliferation and induced apoptosis as evidenced by an increase in the percentage sub-G1 phase cells and cleavage of caspase 3 and poly ADP ribose polymerase (PARP). Conclusions These results highlight and validate the use of our predictive simulation approach to design therapeutic regimens with novel biological mechanisms using drugs with known chemistries. This allows for design of personalized treatments for patients using their tumor genomic signature beyond the “one-gene, one-drug” paradigm. The reuse of existing drugs with clinical data facilitates a rapid translational path into clinic and avoids the uncertainties associated with new chemistry. The corroboration of these results with patient derived cell lines will be pursued and discussed. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document