Predicting Drug Target Interaction by Integrating Drug Fingerprint and Drug Side Effect Using Machine Learning

Author(s):  
Abdelrahman Saad ◽  
Fahima A. Maghraby ◽  
Yasser M. Omar
2019 ◽  
Vol 20 (3) ◽  
pp. 194-202 ◽  
Author(s):  
Wen Zhang ◽  
Weiran Lin ◽  
Ding Zhang ◽  
Siman Wang ◽  
Jingwen Shi ◽  
...  

Background:The identification of drug-target interactions is a crucial issue in drug discovery. In recent years, researchers have made great efforts on the drug-target interaction predictions, and developed databases, software and computational methods.Results:In the paper, we review the recent advances in machine learning-based drug-target interaction prediction. First, we briefly introduce the datasets and data, and summarize features for drugs and targets which can be extracted from different data. Since drug-drug similarity and target-target similarity are important for many machine learning prediction models, we introduce how to calculate similarities based on data or features. Different machine learningbased drug-target interaction prediction methods can be proposed by using different features or information. Thus, we summarize, analyze and compare different machine learning-based prediction methods.Conclusion:This study provides the guide to the development of computational methods for the drug-target interaction prediction.


2013 ◽  
Vol 14 (1) ◽  
Author(s):  
Emmanuel Bresso ◽  
Renaud Grisoni ◽  
Gino Marchetti ◽  
Arnaud Sinan Karaboga ◽  
Michel Souchet ◽  
...  

2018 ◽  
Vol 25 (10) ◽  
pp. 1339-1350 ◽  
Author(s):  
Justin Mower ◽  
Devika Subramanian ◽  
Trevor Cohen

Abstract Objective The aim of this work is to leverage relational information extracted from biomedical literature using a novel synthesis of unsupervised pretraining, representational composition, and supervised machine learning for drug safety monitoring. Methods Using ≈80 million concept-relationship-concept triples extracted from the literature using the SemRep Natural Language Processing system, distributed vector representations (embeddings) were generated for concepts as functions of their relationships utilizing two unsupervised representational approaches. Embeddings for drugs and side effects of interest from two widely used reference standards were then composed to generate embeddings of drug/side-effect pairs, which were used as input for supervised machine learning. This methodology was developed and evaluated using cross-validation strategies and compared to contemporary approaches. To qualitatively assess generalization, models trained on the Observational Medical Outcomes Partnership (OMOP) drug/side-effect reference set were evaluated against a list of ≈1100 drugs from an online database. Results The employed method improved performance over previous approaches. Cross-validation results advance the state of the art (AUC 0.96; F1 0.90 and AUC 0.95; F1 0.84 across the two sets), outperforming methods utilizing literature and/or spontaneous reporting system data. Examination of predictions for unseen drug/side-effect pairs indicates the ability of these methods to generalize, with over tenfold label support enrichment in the top 100 predictions versus the bottom 100 predictions. Discussion and Conclusion Our methods can assist the pharmacovigilance process using information from the biomedical literature. Unsupervised pretraining generates a rich relationship-based representational foundation for machine learning techniques to classify drugs in the context of a putative side effect, given known examples.


2021 ◽  
Author(s):  
Ben Geoffrey A S ◽  
Rafal Madaj ◽  
Akhil Sanker ◽  
Pavan Preetham Valluri ◽  
Harshmeet Singh

Network data is composed of nodes and edges. Successful application of machine learning/deep learning algorithms on network data to make node classification and link prediction have been shown in the area of social networks through which highly customized suggestions are offered to social<br>network users. Similarly one can attempt the use of machine learning/deep learning algorithms on biological network data to generate predictions of scientific usefulness. In the presented work, compound-drug target interaction network data set from bindingDB has been used to train deep learning neural network and a multi class classification has been implemented to classify PubChem compound queried by the user into class labels of PBD IDs. This way target interaction prediction for PubChem compounds is carried out using deep learning. The user is required to input the PubChem Compound ID (CID) of the compound the user wishes to gain information about its predicted biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target interaction for the input CID. Further the tool also optimizes the compound of interest of the user toward drug likeness properties through a deep learning based structure optimization with a deep learning based<br>drug likeness optimization protocol. The tool also incorporates a feature to perform automated In Silico modelling for the compounds and the predicted drug targets to uncover their protein-ligand interaction profiles. The program is hosted, supported and maintained at the following GitHub repository<div><br></div>https://github.com/bengeof/Compound2DeNovoDrugPropMax<br>


Author(s):  
Songtao Huang ◽  
Yanrui Ding

Background: Drug repositioning is an important subject in drug-disease research. In the past, most studies simply used drug descriptors as the feature vector to classify drugs or targets, or used qualitative data about drug-target or drug-disease to predict drug-target interactions. These data provide limited information for drug repositioning. Objective: Considering both drugs and targets and constructing quantitative drug-target interaction descriptors as a method of drug characteristics are of great significance to the study of drug repositioning. Methods: Taking anticancer and anti-inflammatory drugs as research objects, the interaction sites between drugs and targets were determined by molecular docking. Sixty-seven drug-target interaction descriptors were calculated to describe the drug-target interactions, and 22 important descriptors were screened for drug classification by SVM, LightGBM and MLP. Results: The accuracy of SVM, LightGBM and MLP reached 93.29%, 92.68% and 94.51%, their Matthews correlation coefficients reached 0.852, 0.840 and 0.882, and their areas under the ROC curve reached 0.977, 0.969 and 0.968, respectively. Conclusion: Using drug-target interaction descriptors to build machine learning models can obtain better results for drug classification. Number of atom pairs, force field, hydrophobic interactions and bSASA are the four types of key features for the classification of anticancer and anti-inflammatory drugs.


Author(s):  
Maryam Bagherian ◽  
Elyas Sabeti ◽  
Kai Wang ◽  
Maureen A Sartor ◽  
Zaneta Nikolovska-Coleska ◽  
...  

2021 ◽  
Author(s):  
Ben Geoffrey A S ◽  
Rafal Madaj ◽  
Akhil Sanker ◽  
Pavan Preetham Valluri

Network data is composed of nodes and edges. Successful application of machine learning/deep<br>learning algorithms on network data to make node classification and link prediction have been shown<br>in the area of social networks through which highly customized suggestions are offered to social<br>network users. Similarly one can attempt the use of machine learning/deep learning algorithms on<br>biological network data to generate predictions of scientific usefulness. In the presented work,<br>compound-drug target interaction network data set from bindingDB has been used to train deep<br>learning neural network and a multi class classification has been implemented to classify PubChem<br>compound queried by the user into class labels of PBD IDs. This way target interaction prediction for<br>PubChem compounds is carried out using deep learning. The user is required to input the PubChem<br>Compound ID (CID) of the compound the user wishes to gain information about its predicted<br>biological activity and the tool outputs the RCSB PDB IDs of the predicted drug target interaction for<br>the input CID. Further the tool also optimizes the compound of interest of the user toward drug<br>likeness properties through a deep learning based structure optimization with a deep learning based<br>drug likeness optimization protocol. The tool also incorporates a feature to perform automated In<br>Silico modelling for the compounds and the predicted drug targets to uncover their protein-ligand<br>interaction profiles. The program is hosted, supported and maintained at the following GitHub<br><div>repository</div><div><br></div><div>https://github.com/bengeof/Compound2DeNovoDrugPropMax</div><div><br></div>Anticipating the rise in the use of quantum computing and quantum machine learning in drug discovery we use<br>the Penny-lane interface to quantum hardware to turn classical Keras layers used in our machine/deep<br>learning models into a quantum layer and introduce quantum layers into classical models to produce a<br>quantum-classical machine/deep learning hybrid model of our tool and the code corresponding to the<br><div>same is provided below</div><div><br></div>https://github.com/bengeof/QPoweredCompound2DeNovoDrugPropMax<br>


Sign in / Sign up

Export Citation Format

Share Document