scholarly journals A Machine Learning-Based Biological Drug–Target Interaction Prediction Method for a Tripartite Heterogeneous Network

ACS Omega ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 3037-3045
Author(s):  
Ying Zheng ◽  
Zheng Wu
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yang Yue ◽  
Shan He

Abstract Background Prediction of the drug-target interaction (DTI) is a critical step in the drug repurposing process, which can effectively reduce the following workload for experimental verification of potential drugs’ properties. In recent studies, many machine-learning-based methods have been proposed to discover unknown interactions between drugs and protein targets. A recent trend is to use graph-based machine learning, e.g., graph embedding to extract features from drug-target networks and then predict new drug-target interactions. However, most of the graph embedding methods are not specifically designed for DTI predictions; thus, it is difficult for these methods to fully utilize the heterogeneous information of drugs and targets (e.g., the respective vertex features of drugs and targets and path-based interactive features between drugs and targets). Results We propose a DTI prediction method DTI-HeNE (DTI based on Heterogeneous Network Embedding), which is specifically designed to cope with the bipartite DTI relations for generating high-quality embeddings of drug-target pairs. This method splits a heterogeneous DTI network into a bipartite DTI network, multiple drug homogeneous networks and target homogeneous networks, and extracts features from these sub-networks separately to better utilize the characteristics of bipartite DTI relations as well as the auxiliary similarity information related to drugs and targets. The features extracted from each sub-network are integrated using pathway information between these sub-networks to acquire new features, i.e., embedding vectors of drug-target pairs. Finally, these features are fed into a random forest (RF) model to predict novel DTIs. Conclusions Our experimental results show that, the proposed DTI network embedding method can learn higher-quality features of heterogeneous drug-target interaction networks for novel DTIs discovery.


2019 ◽  
Vol 20 (3) ◽  
pp. 194-202 ◽  
Author(s):  
Wen Zhang ◽  
Weiran Lin ◽  
Ding Zhang ◽  
Siman Wang ◽  
Jingwen Shi ◽  
...  

Background:The identification of drug-target interactions is a crucial issue in drug discovery. In recent years, researchers have made great efforts on the drug-target interaction predictions, and developed databases, software and computational methods.Results:In the paper, we review the recent advances in machine learning-based drug-target interaction prediction. First, we briefly introduce the datasets and data, and summarize features for drugs and targets which can be extracted from different data. Since drug-drug similarity and target-target similarity are important for many machine learning prediction models, we introduce how to calculate similarities based on data or features. Different machine learningbased drug-target interaction prediction methods can be proposed by using different features or information. Thus, we summarize, analyze and compare different machine learning-based prediction methods.Conclusion:This study provides the guide to the development of computational methods for the drug-target interaction prediction.


2020 ◽  
Vol 27 (5) ◽  
pp. 348-358 ◽  
Author(s):  
Yijie Ding ◽  
Jijun Tang ◽  
Fei Guo

:The identification of Drug-Target Interactions (DTIs) is an important process in drug discovery and medical research. However, the tradition experimental methods for DTIs identification are still time consuming, extremely expensive and challenging. In the past ten years, various computational methods have been developed to identify potential DTIs. In this paper, the identification methods of DTIs are summarized. What's more, several state-of-the-art computational methods are mainly introduced, containing network-based method and machine learning-based method. In particular, for machine learning-based methods, including the supervised and semisupervised models, have essential differences in the approach of negative samples. Although these effective computational models in identification of DTIs have achieved significant improvements, network-based and machine learning-based methods have their disadvantages, respectively. These computational methods are evaluated on four benchmark data sets via values of Area Under the Precision Recall curve (AUPR).


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Xu ◽  
Xiaoqing Ru ◽  
Rong Song

Exploring drug–target interactions by biomedical experiments requires a lot of human, financial, and material resources. To save time and cost to meet the needs of the present generation, machine learning methods have been introduced into the prediction of drug–target interactions. The large amount of available drug and target data in existing databases, the evolving and innovative computer technologies, and the inherent characteristics of various types of machine learning have made machine learning techniques the mainstream method for drug–target interaction prediction research. In this review, details of the specific applications of machine learning in drug–target interaction prediction are summarized, the characteristics of each algorithm are analyzed, and the issues that need to be further addressed and explored for future research are discussed. The aim of this review is to provide a sound basis for the construction of high-performance models.


Sign in / Sign up

Export Citation Format

Share Document