Extending Borda Rule Under q-rung Orthopair Fuzzy Set for Multi-attribute Group Decision-Making

Author(s):  
R. Krishankumar ◽  
S. Shyam ◽  
R. P. Nethra ◽  
S. Srivatsa ◽  
K. S. Ravichandran
Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 342 ◽  
Author(s):  
Krishankumar ◽  
Ravichandran ◽  
Ahmed ◽  
Kar ◽  
Peng

As a powerful generalization to fuzzy set, hesitant fuzzy set (HFS) was introduced, which provided multiple possible membership values to be associated with a specific instance. But HFS did not consider occurrence probability values, and to circumvent the issue, probabilistic HFS (PHFS) was introduced, which associates an occurrence probability value with each hesitant fuzzy element (HFE). Providing such a precise probability value is an open challenge and as a generalization to PHFS, interval-valued PHFS (IVPHFS) was proposed. IVPHFS provided flexibility to decision makers (DMs) by associating a range of values as an occurrence probability for each HFE. To enrich the usefulness of IVPHFS in multi-attribute group decision-making (MAGDM), in this paper, we extend the Muirhead mean (MM) operator to IVPHFS for aggregating preferences. The MM operator is a generalized operator that can effectively capture the interrelationship between multiple attributes. Some properties of the proposed operator are also discussed. Then, a new programming model is proposed for calculating the weights of attributes using DMs’ partial information. Later, a systematic procedure is presented for MAGDM with the proposed operator and the practical use of the operator is demonstrated by using a renewable energy source selection problem. Finally, the strengths and weaknesses of the proposal are discussed in comparison with other methods.


2019 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Awanda Amelia Maron ◽  
Yudiantri Asdi

Chen dan Xu memperkenalkan tentang relasi preference hesitant bernilai interval dalam proses pengambilan keputusan kelompok(Group Decision Making/GDM ) [2]. Pada proses GDM digunakan operator-operator untuk mengumpulkan informasi Interval-valued Hesitant Fuzzy Set (IVHFS) [2]. Konsep himpunan kabur hesitant bernilai interval banyak digunakan pada teori pengambilan keputusan. akan tetapi pada penelitian ini hanya dibatasi kajian aljabar yaitu dikaji tentang sifat-sifat operasi pada elemen kabur hesitant bernilai interval dan bentuk operator-operator pada IVHFS. Operasi ring sum, ring product, irisan dan gabungan pada elemen kabur hesitant bernilai interval memenuhi sifat-sifat aljabar yaitu sifat komutatif, sifat asosiatif, sifat distributif. Bentuk operator-operator pada himpunan kabur hesitant bernilai interval yaitu operator GIVHFWA, GIVHFWG dan operator GIVHFOWA, GIVHFOWG.Kata Kunci :himpunan kabur hesitant bernilai interval, sifat-sifat operasi, operator


2020 ◽  
Vol 39 (3) ◽  
pp. 3503-3518
Author(s):  
Guijun Wang ◽  
Jie Zhou

The polygonal fuzzy set is an effective tool to express a class of fuzzy information with the help of finite ordered real numbers. It can not only guarantee the closeness of arithmetic operation of the polygonal fuzzy sets, but also has good linearity and intuitiveness. Firstly, the concept of the n-intuitionistic polygonal fuzzy set (n-IPFS) is proposed based on the intuitionistic fuzzy set and the polygonal fuzzy set. The ordered representation and arithmetic operation of n-IPFS are given by an example. Secondly, a new aggregation method for multi attribute fuzzy information is given based on the n-IPFS operations and the weighted arithmetic average operator, and the ranking criteria of n-IPFS are obtained by using the score function and the accuracy function. Finally, a new group decision making method is proposed for urban residents to choose the livable city problem based on the decision matrix of the n-IPFS, and the effectiveness of the proposed method is explained by an actual example.


2019 ◽  
Vol 9 (6) ◽  
pp. 1232 ◽  
Author(s):  
Zia Bashir ◽  
Yasir Bashir ◽  
Tabasam Rashid ◽  
Jawad Ali ◽  
Wei Gao

Making decisions are very common in the modern socio-economic environments. However, with the increasing complexity of the social, today’s decision makers (DMs) face such problems in which they hesitate and irresolute to provide their views. To cope with these uncertainties, many generalizations of fuzzy sets are designed, among them dual hesitant fuzzy set (DHFS) is quite resourceful and efficient in solving problems of a more vague nature. In this article, a novel concept called proportional dual hesitant fuzzy set (PDHFS) is proposed to further improve DHFS. The PDHFS is a flexible tool composed of some possible membership values and some possible non-membership values along with their associated proportions. In the theme of PDHFS, the proportions of membership values and non-membership values are considered to be independent. Some basic operations, properties, distance measure and comparison method are studied for the proposed set. Thereafter, a novel approach based on PDHFSs is developed to solve problems for multi-attribute group decision-making (MAGDM) in a fuzzy situation. It is totally different from the traditional approach. Finally, a practical example is given in order to elaborate the proposed method for the selection of the best alternative and detailed comparative analysis is given in order to validate the practicality.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Wei Liang ◽  
Xiaolu Zhang ◽  
Manfeng Liu

As a new extension of Pythagorean fuzzy set (also called Atanassov’s intuitionistic fuzzy set of second type), interval-valued Pythagorean fuzzy set which is parallel to Atanassov’s interval-valued intuitionistic fuzzy set has recently been developed to model imprecise and ambiguous information in practical group decision making problems. The aim of this paper is to put forward a novel decision making method for handling multiple criteria group decision making problems within interval-valued Pythagorean fuzzy environment based on interval-valued Pythagorean fuzzy numbers (IVPFNs). There are three key issues being addressed in this approach. The first is to introduce an interval-valued Pythagorean fuzzy weighted arithmetic averaging (IVPF-WAA) operator to aggregate the decision data in order to get the overall preference values of alternatives. Some desirable properties of the IVPF-WAA operator are also investigated. Based on the idea of the maximizing deviation method, the second is to establish an optimization model for determining the weights of criteria for each expert. The third is to construct a minimizing consistency optimal model to derive the weights of criteria for the group. Finally, an illustrating example is given to verify the proposed approach.


2018 ◽  
Vol 23 (21) ◽  
pp. 10853-10879 ◽  
Author(s):  
R. Krishankumar ◽  
K. S. Ravichandran ◽  
Samarjit Kar ◽  
Pankaj Gupta ◽  
Mukesh Kumar Mehlawat

Sign in / Sign up

Export Citation Format

Share Document