Fixed Parameter Tractability and Polynomial Time Results for the Synthesis of b-bounded Petri Nets

Author(s):  
Ronny Tredup
Author(s):  
Marko Samer ◽  
Stefan Szeider

Parameterized complexity is a new theoretical framework that considers, in addition to the overall input size, the effects on computational complexity of a secondary measurement, the parameter. This two-dimensional viewpoint allows a fine-grained complexity analysis that takes structural properties of problem instances into account. The central notion is “fixed-parameter tractability” which refers to solvability in polynomial time for each fixed value of the parameter such that the order of the polynomial time bound is independent of the parameter. This chapter presents main concepts and recent results on the parameterized complexity of the satisfiability problem and it outlines fundamental algorithmic ideas that arise in this context. Among the parameters considered are the size of backdoor sets with respect to various tractable base classes and the treewidth of graph representations of satisfiability instances.


2013 ◽  
Vol 47 ◽  
pp. 475-519 ◽  
Author(s):  
N. Betzler ◽  
A. Slinko ◽  
J. Uhlmann

We investigate two systems of fully proportional representation suggested by Chamberlin Courant and Monroe. Both systems assign a representative to each voter so that the "sum of misrepresentations" is minimized. The winner determination problem for both systems is known to be NP-hard, hence this work aims at investigating whether there are variants of the proposed rules and/or specific electorates for which these problems can be solved efficiently. As a variation of these rules, instead of minimizing the sum of misrepresentations, we considered minimizing the maximal misrepresentation introducing effectively two new rules. In the general case these "minimax" versions of classical rules appeared to be still NP-hard. We investigated the parameterized complexity of winner determination of the two classical and two new rules with respect to several parameters. Here we have a mixture of positive and negative results: e.g., we proved fixed-parameter tractability for the parameter the number of candidates but fixed-parameter intractability for the number of winners. For single-peaked electorates our results are overwhelmingly positive: we provide polynomial-time algorithms for most of the considered problems. The only rule that remains NP-hard for single-peaked electorates is the classical Monroe rule.


Author(s):  
Yongjie Yang

We study the complexity of several manipulation and control problems for six prevalent approval based multiwinner voting rules. We show that these rules generally resist the proposed strategic types. In addition, we also give fixed-parameter tractability results for these problems with respect to several natural parameters and derive polynomial-time algorithms for certain special cases.


2013 ◽  
Vol 46 (7) ◽  
pp. 839-860 ◽  
Author(s):  
Panos Giannopoulos ◽  
Christian Knauer ◽  
Günter Rote ◽  
Daniel Werner

Author(s):  
Feng Shi ◽  
Jie You ◽  
Zhen Zhang ◽  
Jingyi Liu ◽  
Jianxin Wang

Networks ◽  
2005 ◽  
Vol 46 (3) ◽  
pp. 124-135 ◽  
Author(s):  
Jiong Guo ◽  
Rolf Niedermeier

Algorithmica ◽  
2012 ◽  
Vol 68 (3) ◽  
pp. 739-757 ◽  
Author(s):  
Robert Crowston ◽  
Gregory Gutin ◽  
Mark Jones ◽  
Venkatesh Raman ◽  
Saket Saurabh ◽  
...  

2017 ◽  
Vol 27 (04) ◽  
pp. 277-296 ◽  
Author(s):  
Vincent Froese ◽  
Iyad Kanj ◽  
André Nichterlein ◽  
Rolf Niedermeier

We study the General Position Subset Selection problem: Given a set of points in the plane, find a maximum-cardinality subset of points in general position. We prove that General Position Subset Selection is NP-hard, APX-hard, and present several fixed-parameter tractability results for the problem as well as a subexponential running time lower bound based on the Exponential Time Hypothesis.


Sign in / Sign up

Export Citation Format

Share Document