fixed parameter tractability
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 26)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
pp. 103644
Author(s):  
Julien Baste ◽  
Michael R. Fellows ◽  
Lars Jaffke ◽  
Tomáš Masařík ◽  
Mateus de Oliveira Oliveira ◽  
...  

Author(s):  
Argyrios Deligkas ◽  
Eduard Eiben ◽  
Robert Ganian ◽  
Thekla Hamm ◽  
Sebastian Ordyniak

We study the Connected Fair Division problem (CFD), which generalizes the fundamental problem of fairly allocating resources to agents by requiring that the items allocated to each agent form a connected subgraph in a provided item graph G. We expand on previous results by providing a comprehensive complexity-theoretic understanding of CFD based on several new algorithms and lower bounds while taking into account several well-established notions of fairness: proportionality, envy-freeness, EF1 and EFX. In particular, we show that to achieve tractability, one needs to restrict both the agents and the item graph in a meaningful way. We design (XP)-algorithms for the problem parameterized by (1) clique-width of G plus the number of agents and (2) treewidth of G plus the number of agent types, along with corresponding lower bounds. Finally, we show that to achieve fixed-parameter tractability, one needs to not only use a more restrictive parameterization of G, but also include the maximum item valuation as an additional parameter.


Author(s):  
Sebastian Ordyniak ◽  
Andre Schidler ◽  
Stefan Szeider

We introduce backdoor DNFs, as a tool to measure the theoretical hardness of CNF formulas. Like backdoor sets and backdoor trees, backdoor DNFs are defined relative to a tractable class of CNF formulas. Each conjunctive term of a backdoor DNF defines a partial assignment that moves the input CNF formula into the base class. Backdoor DNFs are more expressive and potentially smaller than their predecessors backdoor sets and backdoor trees. We establish the fixed-parameter tractability of the backdoor DNF detection problem. Our results hold for the fundamental base classes Horn and 2CNF, and their combination. We complement our theoretical findings by an empirical study. Our experiments show that backdoor DNFs provide a significant improvement over their predecessors.


Author(s):  
Feng Shi ◽  
Jie You ◽  
Zhen Zhang ◽  
Jingyi Liu ◽  
Jianxin Wang

Author(s):  
Marko Samer ◽  
Stefan Szeider

Parameterized complexity is a new theoretical framework that considers, in addition to the overall input size, the effects on computational complexity of a secondary measurement, the parameter. This two-dimensional viewpoint allows a fine-grained complexity analysis that takes structural properties of problem instances into account. The central notion is “fixed-parameter tractability” which refers to solvability in polynomial time for each fixed value of the parameter such that the order of the polynomial time bound is independent of the parameter. This chapter presents main concepts and recent results on the parameterized complexity of the satisfiability problem and it outlines fundamental algorithmic ideas that arise in this context. Among the parameters considered are the size of backdoor sets with respect to various tractable base classes and the treewidth of graph representations of satisfiability instances.


2020 ◽  
Vol 64 (7) ◽  
pp. 1307-1316
Author(s):  
Aritra Banik ◽  
Ashwin Jacob ◽  
Vijay Kumar Paliwal ◽  
Venkatesh Raman

Author(s):  
Hubie Chen ◽  
Georg Gottlob ◽  
Matthias Lanzinger ◽  
Reinhard Pichler

Constraint satisfaction problems (CSPs) are an important formal framework for the uniform treatment of various prominent AI tasks, e.g., coloring or scheduling problems. Solving CSPs is, in general, known to be NP-complete and fixed-parameter intractable when parameterized by their constraint scopes. We give a characterization of those classes of CSPs for which the problem becomes fixed-parameter tractable. Our characterization significantly increases the utility of the CSP framework by making it possible to decide the fixed-parameter tractability of problems via their CSP formulations. We further extend our characterization to the evaluation of unions of conjunctive queries, a fundamental problem in databases. Furthermore, we provide some new insight on the frontier of PTIME solvability of CSPs. In particular, we observe that bounded fractional hypertree width is more general than bounded hypertree width only for classes that exhibit a certain type of exponential growth. The presented work resolves a long-standing open problem and yields powerful new tools for complexity research in AI and database theory.


Sign in / Sign up

Export Citation Format

Share Document