Fresh Concrete Pumping Arrest Investigation for Thixotropy by a CFD Modelling Approach

Author(s):  
Robin De Schryver ◽  
Khadija El Cheikh ◽  
Mert Y. Yardimci ◽  
Karel Lesage ◽  
Geert De Schutter
2021 ◽  
Vol 276 ◽  
pp. 122204
Author(s):  
Shengqiang Jiang ◽  
Xiaodong Chen ◽  
Guodong Cao ◽  
Yuanqiang Tan ◽  
Xiangwu Xiao ◽  
...  

Author(s):  
Peter Stein ◽  
Dirk Telschow ◽  
Frederic Lamarque ◽  
Nuncio Colitto

Since many years the diffuser and exhaust of low pressure (LP) turbines have been in the focus of turbine development and accordingly broadly discussed within the scientific community. The pressure recovery gained within the diffuser significantly contributes to the turbine performance and therefore plenty of care is taken in investigations of the flow as well as optimization within this part of the turbine. However on a plant level the component following the LP turbine is the condenser, which is connected by the condenser neck. Typically the condenser neck is not fully designed to provide additional enthalpy recovery. Due to plant arrangement reasons, often it is full of built-ins like stiffening struts, feed-water heaters, extraction pipes, steam dump devices and others. It is vital to minimize the pressure losses across the condenser neck, in order to keep performance benefit, previously gained within the diffuser. As a general rule, each mbar of total pressure loss in a condenser neck may reduce the gross power output up to 0.1%. While turbines usually follow a modular approach, the condenser is typically designed plant specific. Therefore, on a plant level it is crucial to identify and evaluate the loss contributors and develop processes and tools which allow an accurate and efficient design process for an optimized condenser neck design. This needs to be performed as a coupled modelling approach, as both, turbine and condenser flow interact with each other. 3-D CFD tools enable a deep insight into the flow field and help to locally optimize the design, as they help to identify local losses and this even for small geometrical design changes. Unfortunately these tools are costly with respect to computational time and resources, if they are used to analyze a full condenser neck with all built-ins. Here 1-D modelling approaches can help to close the gap, as they can provide fast feedback, e.g. in a project tender phase, or can allow to quickly analyze design changes. For this they need a proper calibration and validation. This publication discusses the CFD modelling of a LP steam turbine coupled to a condenser neck and the validity of such calculations against measurement data. In the second publication (Part 2) a simplification of the gained information to a 1-D modelling approach will be discussed.


2010 ◽  
Vol 71 (2) ◽  
pp. 137-147 ◽  
Author(s):  
A. Melese Endalew ◽  
C. Debaer ◽  
N. Rutten ◽  
J. Vercammen ◽  
M.A. Delele ◽  
...  

2000 ◽  
Vol 11 (3) ◽  
pp. 19-28 ◽  
Author(s):  
Hajime Takano ◽  
Yoshihisa Nakata ◽  
Yoshinori Nara ◽  
Torao Kemi

2017 ◽  
Vol 10 (6) ◽  
pp. 1799-1811 ◽  
Author(s):  
M. H. H. Ishak ◽  
M. Z. Abdullah ◽  
M. S. Abdul Aziz ◽  
A. Abas ◽  
W. K. Loh ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1415 ◽  
Author(s):  
Yijian Zhan ◽  
Jian Gong ◽  
Yulin Huang ◽  
Chong Shi ◽  
Zibo Zuo ◽  
...  

The use of self-consolidating concrete and advanced pumping system enables efficient construction of super high-rise buildings; however, risks such as clogging or even bursting of pipeline still exist. To better understand the fresh concrete pumping mechanisms in detail, the discrete element method is employed in this paper for the numerical simulation of local pumping problems. By modeling the coarse aggregates as rigid clumps and appropriately defining the contact models, the concrete flow in representative pipeline units is well revealed. Important factors related to the pipe geometry, aggregate geometry and pumping condition were considered during a series of parametric studies. Based on the simulation results, their impact on the local pumping performance is summarized. The present work demonstrates that the discrete element simulation offers a useful way to evaluate the influence of various parameters on the pumpability of fresh concrete.


Sign in / Sign up

Export Citation Format

Share Document