Clustering Data in Secured, Distributed Datasets

Author(s):  
Sayantan Dey ◽  
Lee A. Carraher ◽  
Anindya Moitra ◽  
Philip A. Wilsey
Keyword(s):  
2020 ◽  
Vol 3 (3) ◽  
pp. 187-201
Author(s):  
Sufajar Butsianto ◽  
Nindi Tya Mayangwulan

Penggunaan mobil di Indonesia setiap tahunnya selalu meningkat dan membuat perusahaan otomotif berlomba-lomba dalam peningkatan penjualannya. Tujuan dari penelitian ini untuk mengelompokan data penjualan kedalam sebuah cluster dengan metode Data Mining Algoritma K-Means Clustering. Data Penjualan nantinya akan dikelompokan berdasarkan kemiripan data tersebut sehingga data dengan karakteristik yang sama akan berada dalam satu cluster. Atribut yang digunakan adalah brand dan penjualan. Cluster yang terbentuk setelah dilakukan proses K-Means Clustering terbagi menjadi tiga cluster yaitu Cluster 0 jumlah anggota 235 dengan presentase 26% dikategorikan Laris, Cluster 1 jumlah anggota 604 dengan presentase 67% dikategorikan Kurang Laris, dan Cluster 2 jumlah angota 61 dengan presentase 7% dikategorikan Paling Laris, dari proses clustering diatas dapat diperoleh validasi DBI (Davies Bouldin Index) dengan nilai 0,341


2018 ◽  
Vol 3 (1) ◽  
pp. 001
Author(s):  
Zulhendra Zulhendra ◽  
Gunadi Widi Nurcahyo ◽  
Julius Santony

In this study using Data Mining, namely K-Means Clustering. Data Mining can be used in searching for a large enough data analysis that aims to enable Indocomputer to know and classify service data based on customer complaints using Weka Software. In this study using the algorithm K-Means Clustering to predict or classify complaints about hardware damage on Payakumbuh Indocomputer. And can find out the data of Laptop brands most do service on Indocomputer Payakumbuh as one of the recommendations to consumers for the selection of Laptops.


2020 ◽  
Vol 25 (1) ◽  
pp. 76-88
Author(s):  
Suhandio Handoko ◽  
Fauziah Fauziah ◽  
Endah Tri Esti Handayani
Keyword(s):  

Perkembangan industri telekomunikasi saat ini sangat pesat karena telekomunikasi sudah menjadi kebutuhan utama bagi masyarakat sehingga banyak perusahaan yang bergerak di industry telekomunikasi. Banyaknya industry Telekomunikasi menuntut para pengembang untuk menemukan strategi atau suatu pola yang dapat meningkatkan penjualan dan pemasaran produk, salah satu strateginya adalah dengan memanfaatkan data transaksi. Paket data merupakan produk dibidang telekomunikasi. Proses Clustering saat ini masih di lakukan secara manual sehingga membutuhkan waktu, proses perhitungan dan ketelitian yang tinggi. Pada penelitian ini dibuat aplikasi berbasis website dengan tujuan untuk mempermudah Clustering data sehingga dapat digunakan sebagai referensi dalam perencanaan promosi produk telkomsel ke berbagai daerah. Metode yang digunakan untuk mengatasi permasalahan tersebut yaitu metode Clustering dengan menggunakan Algoritma K-Means. Algoritma K-Means merupakan algoritma pengelompokkan sejumlah data menjadi menjadi kelompok-kelompok data tertentu. Pada penelitian ini data penjualan dikelompokkan menjadi 3 yaitu data penjualan rendah, data penjualan sedang dan data penjualan tinggi. Pengujian clustering dengan algoritma K-Means pada aplikasi terhadap data transaksi penjualan paket telkomsel diperoleh persentase kesesuaian yaitu 100% dibandingkan dengan clustering manual.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 786
Author(s):  
Yenny Villuendas-Rey ◽  
Eley Barroso-Cubas ◽  
Oscar Camacho-Nieto ◽  
Cornelio Yáñez-Márquez

Swarm intelligence has appeared as an active field for solving numerous machine-learning tasks. In this paper, we address the problem of clustering data with missing values, where the patterns are described by mixed (or hybrid) features. We introduce a generic modification to three swarm intelligence algorithms (Artificial Bee Colony, Firefly Algorithm, and Novel Bat Algorithm). We experimentally obtain the adequate values of the parameters for these three modified algorithms, with the purpose of applying them in the clustering task. We also provide an unbiased comparison among several metaheuristics based clustering algorithms, concluding that the clusters obtained by our proposals are highly representative of the “natural structure” of data.


Teknologi ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 59-68
Author(s):  
Meida Cahyo Untoro ◽  
◽  
Leslie Anggraini ◽  
Maria Andini ◽  
Hesti Retnosari ◽  
...  

The disease epidemic that attacked the respiratory area and was detected in Indonesia starting in early 2020 is the Corona Virus (COVID-19). This virus's spread is relatively easy, namely through droplets from infected patients, so that the spread is very rapid. This research was conducted to cluster the data on Covid-19 cases in Jakarta Province considering that Jakarta is the starting point for the first case of Corona in Indonesia and until now has become one of the most significant contributors to COVID-19 issues in Indonesia, namely as of December 2020 positive cases of Covid-19 reached 154,000. Souls with the healing of 139.0000 souls. The grouping was carried out based on positive and dead patients from each urban village in Jakarta Province. This study uses the k-means Method to cluster in the handling of COVID-19 cases with 2 clusters. Data distribution in cluster 1 consists of 173 data and 18 data in cluster 2. The use of k-means in this study provides information on areas with the highest and lowest number of positive cases and the highest and lowest cure rates that can be used as an evaluation in handling the Covid-virus 19.


2017 ◽  
Vol 20 (K4) ◽  
pp. 30-38
Author(s):  
Tung Son Pham ◽  
Huy Minh Truong ◽  
Tuan Ba Pham

In recent years, Artificial Intelligence (AI) has become an emerging subject and been recognized as the flagship of the Fourth Industrial Revolution. AI is subtly growing and becoming vital in our daily life. Particularly, Self-Organizing Map (SOM), one of the major branches of AI, is a useful tool for clustering data and has been applied successfully and widespread in various aspects of human life such as psychology, economic, medical and technical fields like mechanical, construction and geology. In this paper, the primary purpose of the authors is to introduce SOM algorithm and its practical applications in geology and construction. The results are classification of rock facies versus depth in geology and clustering two sets of construction prices indices and building material costs indice.


Sign in / Sign up

Export Citation Format

Share Document