A Scale-Resolving Elliptic-Relaxation-Based Eddy-Viscosity Model: Development and Validation

Author(s):  
Benjamin Krumbein ◽  
Robert Maduta ◽  
Suad Jakirlić ◽  
Cameron Tropea
2014 ◽  
Vol 26 (4) ◽  
pp. 041702 ◽  
Author(s):  
M. Germano ◽  
A. Abbà ◽  
R. Arina ◽  
L. Bonaventura

Author(s):  
Feng Wang ◽  
Mauro Carnevale ◽  
Luca di Mare ◽  
Simon Gallimore

Computational Fluid Dynamics (CFD) has been widely used for compressor design, yet the prediction of performance and stage matching for multi-stage, high-speed machines remain challenging. This paper presents the authors’ effort to improve the reliability of CFD in multistage compressor simulations. The endwall features (e.g. blade fillet and shape of the platform edge) are meshed with minimal approximations. Turbulence models with linear and non-linear eddy viscosity models are assessed. The non-linear eddy viscosity model predicts a higher production of turbulent kinetic energy in the passages, especially close to the endwall region. This results in a more accurate prediction of the choked mass flow and the shape of total pressure profiles close to the hub. The non-linear viscosity model generally shows an improvement on its linear counterparts based on the comparisons with the rig data. For geometrical details, truncated fillet leads to thicker boundary layer on the fillet and reduced mass flow and efficiency. Shroud cavities are found to be essential to predict the right blockage and the flow details close to the hub. At the part speed the computations without the shroud cavities fail to predict the major flow features in the passage and this leads to inaccurate predictions of massflow and shapes of the compressor characteristic. The paper demonstrates that an accurate representation of the endwall geometry and an effective turbulence model, together with a good quality and sufficiently refined grid result in a credible prediction of compressor matching and performance with steady state mixing planes.


Author(s):  
Xinrong Su ◽  
Xin Yuan

This work presents the implementation and study of the quadratic constitutive relation nonlinear eddy-viscosity model with representative compressor application, for which the corner separation has been poorly predicted with the widely used linear Boussinesq eddy-viscosity model. With the introduction of the Reynolds stress anisotropy, the secondary flow of the second kind and its effect on the corner flow can be well captured and this results in greatly improved prediction of pressure coefficient, total pressure loss coefficient and the corner separation size. Without the quadratic constitutive relation model, the separation size and loss are generally over-estimated. The mechanism of the improvement is studied using both the vortex dynamics and the momentum equation. It is proved that quadratic constitutive relation model consumes low CPU time and provides much improved compressor corner separation prediction without worsening the convergence property.


Sign in / Sign up

Export Citation Format

Share Document