A Non-local Formulation of the One-Phase Stefan Problem Based on Extended Irreversible Thermodynamics

Author(s):  
M. Calvo-Schwarzwälder
Author(s):  
David Jou ◽  
José Casas-Vázquez ◽  
Georgy Lebon

2020 ◽  
Vol 20 (2) ◽  
pp. 437-458 ◽  
Author(s):  
Félix del Teso ◽  
Jørgen Endal ◽  
Juan Luis Vázquez

AbstractThe classical Stefan problem is one of the most studied free boundary problems of evolution type. Recently, there has been interest in treating the corresponding free boundary problem with nonlocal diffusion. We start the paper by reviewing the main properties of the classical problem that are of interest to us. Then we introduce the fractional Stefan problem and develop the basic theory. After that we center our attention on selfsimilar solutions, their properties and consequences. We first discuss the results of the one-phase fractional Stefan problem, which have recently been studied by the authors. Finally, we address the theory of the two-phase fractional Stefan problem, which contains the main original contributions of this paper. Rigorous numerical studies support our results and claims.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


2018 ◽  
Vol 21 (4) ◽  
pp. 901-918 ◽  
Author(s):  
Sabrina Roscani ◽  
Domingo Tarzia

Abstract A one-dimensional fractional one-phase Stefan problem with a temperature boundary condition at the fixed face is considered by using the Riemann–Liouville derivative. This formulation is more convenient than the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No 4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20, No 2 (2017), 399–421), because it allows us to work with Green’s identities (which does not apply when Caputo derivatives are considered). As a main result, an integral relationship between the temperature and the free boundary is obtained which is equivalent to the fractional Stefan condition. Moreover, an exact solution of similarity type expressed in terms of Wright functions is also given.


Sign in / Sign up

Export Citation Format

Share Document