Ductile Fracture Characterization of an IF Steel Tensile Test by Numerical Simulation

Author(s):  
Latifa Arfaoui ◽  
Amel Samet ◽  
Amna Znaidi
1999 ◽  
Vol 122 (3) ◽  
pp. 476-483 ◽  
Author(s):  
A. M. Goijaerts ◽  
L. E. Govaert ◽  
F. P. T. Baaijens

This study is focused on the description of ductile fracture initiation, which is needed to predict product shapes in the blanking process. Two approaches are elaborated using a local ductile fracture model. According to literature, characterization of such a model should take place under loading conditions, comparable to the application. Therefore, the first approach incorporates the characterization of a ductile fracture model in a blanking experiment. The second approach is more favorable for industry. In this approach a tensile test is used to characterize the fracture model, instead of a complex and elaborate blanking experiment. Finite element simulations and blanking experiments are performed for five different clearances to validate both approaches. In conclusion it can be stated that for the investigated material, the first approach gives very good results within the experimental error. The second approach, the more favorable one for industry, yields results within 6 percent of the experiments over a wide, industrial range of clearances, when a newly proposed criterion is used. [S1087-1357(00)02202-4]


Author(s):  
Pavel Michel Zaldivar-Almaguer ◽  
Roberto Andrés Estrada-Cingualbres ◽  
Roberto Pérez-Rodríguez ◽  
Arturo Molina-Gutiérrez

The mechanical characterization of the engineering materials is always a topic of interest to engineers and researchers. The objective of this work is to study the butt welded joint resilience and toughness by means of the tensile test and the numerical simulation. The specimens were fabricated by welding two plates of AISI 1015 steel with an E6013 electrode. An algorithm of the numerical integration based on the trapezoid method that allowed calculating the resilience and toughness as the area under the stress - strain curve was implemented. The algorithm was validated by comparing the numerical results of the resilience with those obtained by the analytical method. The results show that the resilience and the toughness values computed with the experimental stress - strain curve, they have correspondence with the same values calculated with the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document