thermoplastic polymers
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 106)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
pp. 52028
Author(s):  
Thomas Zink ◽  
Loredana Kehrer ◽  
Valerian Hirschberg ◽  
Manfred Wilhelm ◽  
Thomas Böhlke

2021 ◽  
Vol 10 (2) ◽  
pp. 53-62
Author(s):  
A. Donatelli ◽  
G. Casciaro ◽  
T. Marcianò ◽  
F. Caretto

This article assesses the technical feasibility of a recycling process based on grinding, melting and re-shaping of carbon fibers (CFs) reinforced thermoplastic polymers, in order to obtain new products that can be introduced in different markets, depending on mechanical properties retained. The idea at the basis of our study is that this kind of recycling process lies at the edge of the stages of recycling and re-use of materials, considering that the latter is preferable when considering the waste management hierarchy. Lower cost and similar mechanical strength of virgin CFs allowed the spread of recycled CFs in the automotive sector in the form of composite materials. Taking into account the Directive 2000/53/EC that sets out measures to prevent and limit waste from end-of-life (EoL) vehicles and their components, and ensures that where possible this is reused, recycled or recovered, we considered worth to investigate the recyclability of composite materials made with recycled CFs when they will reach the state of EoL materials. Considering this premise, an additional scope of this paper is therefore to provide some useful information about the possibility to perform a multiple closed loop recycling of rCF thermoplastic composites. Experiments carried out demonstrated that re-shaping of composites is technically feasible. Some square plates were produced without any setback. The mass balance of the recycling process demonstrated that about 88% of the EoL material can be recovered. Calculation of energy consumption showed that approximately 16 MJ are necessary in the treatment of 1 kg of EoL composites.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3258
Author(s):  
Edgar Adrián Franco-Urquiza ◽  
Perla Itzel Alcántara Llanas ◽  
Victoria Rentería-Rodríguez ◽  
Raúl Samir Saleme ◽  
Rodrigo Ramírez Aguilar ◽  
...  

The manufacturing process of the aircraft cabin interior panels is expensive and time-consuming, and the resulting panel requires rework due to damages that occurred during their fabrication. The aircraft interior panels must meet structural requirements; hence sandwich composites of a honeycomb core covered with two layers of pre-impregnated fiberglass skin are used. Flat sandwich composites are transformed into panels with complex shapes or geometries using the compression molding process, leading to advanced manufacturing challenges. Some aircraft interior panels are required for non-structural applications; hence sandwich composites can be substituted by cheaper alternative materials and transformed using disruptive manufacturing techniques. This paper evaluates the feasibility of replacing the honeycomb and fiberglass skin layers core with rigid polyurethane foams and thermoplastic polymers. The results show that the structural composites have higher mechanical performances than the proposed sandwich composites, but they are compatible with non-structural applications. Sandwich composite fabrication using the vacuum forming process is feasible for developing non-structural panels. This manufacturing technique is fast, easy, economical, and ecological as it uses recyclable materials. The vacuum forming also covers the entire panel, thus eliminating tapestries, paints, or finishes to the aircraft interior panels. The conclusion of the article describes the focus of future research.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jared Allison ◽  
John Pearce ◽  
Joseph Beaman ◽  
Carolyn Seepersad

Purpose Additive manufacturing (AM) of thermoplastic polymers for powder bed fusion processes typically requires each layer to be fused before the next can be deposited. The purpose of this paper is to present a volumetric AM method in the form of deeply penetrating radio frequency (RF) radiation to improve the speed of the process and the mechanical properties of the polymer parts. Design/methodology/approach The focus of this study was to demonstrate the volumetric fusion of composite mixtures containing polyamide (nylon) 12 and graphite powders using RF radiation as the sole energy source to establish the feasibility of a volumetric AM process for thermoplastic polymers. Impedance spectroscopy was used to measure the dielectric properties of the mixtures as a function of increasing graphite content and identify the percolation limit. The mixtures were then tested in a parallel plate electrode chamber connected to an RF generator to measure the heating effectiveness of different graphite concentrations. During the experiments, the surface temperature of the doped mixtures was monitored. Findings Nylon 12 mixtures containing between 10% and 60% graphite by weight were created, and the loss tangent reached a maximum of 35%. Selective RF heating was shown through the formation of fused composite parts within the powder beds. Originality/value The feasibility of a novel volumetric AM process for thermoplastic polymers was demonstrated in this study, in which RF radiation was used to achieve fusion in graphite-doped nylon powders.


Sign in / Sign up

Export Citation Format

Share Document