A Discrete-Time Queueing Model in a Random Environment

Author(s):  
Rein Nobel ◽  
Annette Rondaij
1994 ◽  
Vol 31 (A) ◽  
pp. 115-129 ◽  
Author(s):  
W. Böhm ◽  
S. G. Mohanty

In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.


2009 ◽  
Vol 46 (04) ◽  
pp. 993-1004
Author(s):  
S. Ma ◽  
M. Molina

We introduce a class of discrete-time two-sex branching processes where the offspring probability distribution and the mating function are governed by an environmental process. It is assumed that the environmental process is formed by independent but not necessarily identically distributed random vectors. For such a class, we determine some relationships among the probability generating functions involved in the mathematical model and derive expressions for the main moments. Also, by considering different probabilistic approaches we establish several results concerning the extinction probability. A simulated example is presented as an illustration.


1981 ◽  
Vol 18 (01) ◽  
pp. 19-30 ◽  
Author(s):  
Robert Cogburn ◽  
William C. Torrez

A generalization to continuous time is given for a discrete-time model of a birth and death process in a random environment. Some important properties of this process in the continuous-time setting are stated and proved including instability and extinction conditions, and when suitable absorbing barriers have been defined, methods are given for the calculation of extinction probabilities and the expected duration of the process.


2003 ◽  
Vol 30 (1) ◽  
pp. 139-153 ◽  
Author(s):  
Dieter Fiems ◽  
Bart Steyaert ◽  
Herwig Bruneel
Keyword(s):  

1978 ◽  
Vol 15 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Do Le Minh

This paper studies a discrete-time, single-server queueing model having a compound Poisson input with time-dependent parameters and a general service time distribution.All major transient characteristics of the system can be calculated very easily. For the queueing model with periodic arrival function, some explicit results are obtained.


2015 ◽  
Vol 269 ◽  
pp. 674-690 ◽  
Author(s):  
Alexander Dudin ◽  
Chesoong Kim ◽  
Sergey Dudin ◽  
Olga Dudina

A discrete time queueing model is considered to estimate of the number of customers in the system. The arrivals, which are in groups of size X, inter-arrivals times and service times are distributed independent. The inter-arrivals fallows geometric distribution with parameter p and service times follows general distribution with parameter µ, we have derive the various transient state solution along with their moments and numerical illustrations in this paper.


Sign in / Sign up

Export Citation Format

Share Document