A discrete-time queueing model of an atm 'leaky bucket' policing mechanism.

1994 ◽  
Author(s):  
F.A. Zanasi ◽  
D.D. Kouvatsos
1994 ◽  
Vol 31 (A) ◽  
pp. 115-129 ◽  
Author(s):  
W. Böhm ◽  
S. G. Mohanty

In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.


2020 ◽  
Vol 12 (6) ◽  
pp. 2343
Author(s):  
Doo Il Choi ◽  
Dae-Eun Lim

This study analyzes the performance of a queue length-dependent overload control policy using a leaky bucket (LB) scheme. This queueing model is applied to the operation of a battery swapping and charging station for electric vehicles (EVs). In addition to the LB scheme, we propose two congestion control policies based on EV queue length thresholds. With these policies, the model determines both EV-arrival and battery-supply intervals, and these depend on the number of EVs waiting in the queue. The queue length distributions, including those at arbitrary epochs, are derived using embedded Markov chain and supplementary variable methods. Performance measures such as blocking probability and mean waiting time are investigated using numerical examples. We study the characteristics of the system using numerical examples and use a cost analysis to investigate situations in which the application of each congestion control policy is advantageous.


2003 ◽  
Vol 30 (1) ◽  
pp. 139-153 ◽  
Author(s):  
Dieter Fiems ◽  
Bart Steyaert ◽  
Herwig Bruneel
Keyword(s):  

1978 ◽  
Vol 15 (3) ◽  
pp. 590-601 ◽  
Author(s):  
Do Le Minh

This paper studies a discrete-time, single-server queueing model having a compound Poisson input with time-dependent parameters and a general service time distribution.All major transient characteristics of the system can be calculated very easily. For the queueing model with periodic arrival function, some explicit results are obtained.


A discrete time queueing model is considered to estimate of the number of customers in the system. The arrivals, which are in groups of size X, inter-arrivals times and service times are distributed independent. The inter-arrivals fallows geometric distribution with parameter p and service times follows general distribution with parameter µ, we have derive the various transient state solution along with their moments and numerical illustrations in this paper.


1994 ◽  
Vol 31 (A) ◽  
pp. 115-129 ◽  
Author(s):  
W. Böhm ◽  
S. G. Mohanty

In this contribution we consider an M/M/1 queueing model with general server vacations. Transient and steady state analysis are carried out in discrete time by combinatorial methods. Using weak convergence of discrete-parameter Markov chains we also obtain formulas for the corresponding continuous-time queueing model. As a special case we discuss briefly a queueing system with a T-policy operating.


Sign in / Sign up

Export Citation Format

Share Document