scholarly journals A Deep Learning Approach for Real-Time 3D Human Action Recognition from Skeletal Data

Author(s):  
Huy Hieu Pham ◽  
Houssam Salmane ◽  
Louahdi Khoudour ◽  
Alain Crouzil ◽  
Pablo Zegers ◽  
...  
Author(s):  
Gopika Rajendran ◽  
Ojus Thomas Lee ◽  
Arya Gopi ◽  
Jais jose ◽  
Neha Gautham

With the evolution of computing technology in many application like human robot interaction, human computer interaction and health-care system, 3D human body models and their dynamic motions has gained popularity. Human performance accompanies human body shapes and their relative motions. Research on human activity recognition is structured around how the complex movement of a human body is identified and analyzed. Vision based action recognition from video is such kind of tasks where actions are inferred by observing the complete set of action sequence performed by human. Many techniques have been revised over the recent decades in order to develop a robust as well as effective framework for action recognition. In this survey, we summarize recent advances in human action recognition, namely the machine learning approach, deep learning approach and evaluation of these approaches.


Author(s):  
Souhila Kahlouche ◽  
Mahmoud Belhocine ◽  
Abdallah Menouar

In this work, efficient human activity recognition (HAR) algorithm based on deep learning architecture is proposed to classify activities into seven different classes. In order to learn spatial and temporal features from only 3D skeleton data captured from a “Microsoft Kinect” camera, the proposed algorithm combines both convolution neural network (CNN) and long short-term memory (LSTM) architectures. This combination allows taking advantage of LSTM in modeling temporal data and of CNN in modeling spatial data. The captured skeleton sequences are used to create a specific dataset of interactive activities; these data are then transformed according to a view invariant and a symmetry criterion. To demonstrate the effectiveness of the developed algorithm, it has been tested on several public datasets and it has achieved and sometimes has overcome state-of-the-art performance. In order to verify the uncertainty of the proposed algorithm, some tools are provided and discussed to ensure its efficiency for continuous human action recognition in real time.


2018 ◽  
Vol 50 ◽  
pp. 146-154 ◽  
Author(s):  
Aparna Akula ◽  
Anuj K. Shah ◽  
Ripul Ghosh

2021 ◽  
Vol 1042 (1) ◽  
pp. 012031
Author(s):  
Badhagouni Suresh Kumar ◽  
S. Viswanadha Raju ◽  
H.Venkateswara Reddy

2018 ◽  
Vol 6 (10) ◽  
pp. 323-328
Author(s):  
K.Kiruba . ◽  
D. Shiloah Elizabeth ◽  
C Sunil Retmin Raj

2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


Sign in / Sign up

Export Citation Format

Share Document