SDWP: A New Data Placement Strategy for Distributed Big Data Warehouses in Hadoop

Author(s):  
Yassine Ramdane ◽  
Nadia Kabachi ◽  
Omar Boussaid ◽  
Fadila Bentayeb
Author(s):  
Marta Nogueira ◽  
João Galvão ◽  
Maribel Y. Santos

Author(s):  
Yassine Ramdane ◽  
Nadia Kabachi ◽  
Omar Boussaid ◽  
Fadila Bentayeb

Author(s):  
Robert Vrbić

Cloud computing provides a powerful, scalable and flexible infrastructure into which one can integrate, previously known, techniques and methods of Data Mining. The result of such integration should be strong and capacitive platform that will be able to deal with the increasing production of data, or that will create the conditions for the efficient mining of massive amounts of data from various data warehouses with the aim of creating (useful) information or the production of new knowledge. This paper discusses such technology - the technology of big data mining, known as Cloud Data Mining (CDM).


Author(s):  
Khaled Dehdouh

In the big data warehouses context, a column-oriented NoSQL database system is considered as the storage model which is highly adapted to data warehouses and online analysis. Indeed, the use of NoSQL models allows data scalability easily and the columnar store is suitable for storing and managing massive data, especially for decisional queries. However, the column-oriented NoSQL DBMS do not offer online analysis operators (OLAP). To build OLAP cubes corresponding to the analysis contexts, the most common way is to integrate other software such as HIVE or Kylin which has a CUBE operator to build data cubes. By using that, the cube is built according to the row-oriented approach and does not allow to fully obtain the benefits of a column-oriented approach. In this chapter, the main contribution is to define a cube operator called MC-CUBE (MapReduce Columnar CUBE), which allows building columnar NoSQL cubes according to the columnar approach by taking into account the non-relational and distributed aspects when data warehouses are stored.


2019 ◽  
Vol 30 (12) ◽  
pp. 2677-2691 ◽  
Author(s):  
Qiufen Xia ◽  
Zichuan Xu ◽  
Weifa Liang ◽  
Shui Yu ◽  
Song Guo ◽  
...  

Author(s):  
Carlos Costa ◽  
Carina Andrade ◽  
Maribel Yasmina Santos
Keyword(s):  
Big Data ◽  

2013 ◽  
Author(s):  
Sreenivas R. Sukumar ◽  
Mohammed M. Olama ◽  
Allen W. McNair ◽  
James J. Nutaro

2016 ◽  
Vol 6 (6) ◽  
pp. 1241-1244 ◽  
Author(s):  
M. Faridi Masouleh ◽  
M. A. Afshar Kazemi ◽  
M. Alborzi ◽  
A. Toloie Eshlaghy

Extraction, Transformation and Loading (ETL) is introduced as one of the notable subjects in optimization, management, improvement and acceleration of processes and operations in data bases and data warehouses. The creation of ETL processes is potentially one of the greatest tasks of data warehouses and so its production is a time-consuming and complicated procedure. Without optimization of these processes, the implementation of projects in data warehouses area is costly, complicated and time-consuming. The present paper used the combination of parallelization methods and shared cache memory in systems distributed on the basis of data warehouse. According to the conducted assessment, the proposed method exhibited 7.1% speed improvement to kattle optimization instrument and 7.9% to talend instrument in terms of implementation time of the ETL process. Therefore, parallelization could notably improve the ETL process. It eventually caused the management and integration processes of big data to be implemented in a simple way and with acceptable speed.


2018 ◽  
Vol 19 (3) ◽  
pp. 245-258
Author(s):  
Vengadeswaran Shanmugasundaram ◽  
Balasundaram Sadhu Ramakrishnan

In this data era, massive volumes of data are being generated every second in variety of domains such as Geoscience, Social Web, Finance, e-Commerce, Health Care, Climate modelling, Physics, Astronomy, Government sectors etc. Hadoop has been well-recognized as de factobig data processing platform that have been extensively adopted, and is currently widely used, in many application domains processing Big Data. Even though it is considered as an efficient solution for such complex query processing, it has its own limitation when the data to be processed exhibit interest locality. The data required for any query execution follows grouping behavior wherein only a part of the Big-Data is accessed frequently. During such scenarion, the time taken to execute a queryand return results, increases exponentially as the amount of data increases leading to much waiting time for the user. Since Hadoop default data placement strategy (HDDPS) does not consider such grouping behavior, it does not perform efficiently resulting in lacunas such as decreased local map task execution, increased query execution time etc. Hence proposed an Optimal Data Placement Strategy (ODPS) based on grouping semantics. In this paper we experiment the significance oftwo most promising clustering techniques viz. Hierarchical Agglomerative Clustering (HAC) and Markov Clustering (MCL) in grouping aware data placement for data intensive applications having interest locality. Initially user access pattern is identified by dynamically analyzing history log.Then both clustering techniques (HAC & MCL) are separately applied over the access pattern to obtain independent clusters. These clusters are interpreted and validated to extract the Optimal Data Groupings (ODG). Finally proposed strategy reorganizes the default data layouts in HDFSbased on ODG to achieve maximum parallel execution per group subjective to Load Balancer and Rack Awareness. Our proposed strategy is tested in 10 node cluster placed in a multi rack with Hadoop installed in every node deployed in cloud platform. Proposed strategy reduces the query execution time, significantly improves the data locality and has proved to be more efficient for massive datasets processing in heterogeneous distributed environment. Also MCL shows a marginal improved performance over HAC for queries exhibiting interest localities.


Sign in / Sign up

Export Citation Format

Share Document