Hybrid Binary Particle Swarm Optimization and Flower Pollination Algorithm Based on Rough Set Approach for Feature Selection Problem

Author(s):  
Mohamed A. Tawhid ◽  
Abdelmonem M. Ibrahim
Computation ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Jingwei Too ◽  
Abdul Abdullah ◽  
Norhashimah Mohd Saad ◽  
Weihown Tee

Due to the increment in hand motion types, electromyography (EMG) features are increasingly required for accurate EMG signals classification. However, increasing in the number of EMG features not only degrades classification performance, but also increases the complexity of the classifier. Feature selection is an effective process for eliminating redundant and irrelevant features. In this paper, we propose a new personal best (Pbest) guide binary particle swarm optimization (PBPSO) to solve the feature selection problem for EMG signal classification. First, the discrete wavelet transform (DWT) decomposes the signal into multiresolution coefficients. The features are then extracted from each coefficient to form the feature vector. After which pbest-guide binary particle swarm optimization (PBPSO) is used to evaluate the most informative features from the original feature set. In order to measure the effectiveness of PBPSO, binary particle swarm optimization (BPSO), genetic algorithm (GA), modified binary tree growth algorithm (MBTGA), and binary differential evolution (BDE) were used for performance comparison. Our experimental results show the superiority of PBPSO over other methods, especially in feature reduction; where it can reduce more than 90% of features while keeping a very high classification accuracy. Hence, PBPSO is more appropriate for application in clinical and rehabilitation applications.


Informatics ◽  
2019 ◽  
Vol 6 (2) ◽  
pp. 21 ◽  
Author(s):  
Jingwei Too ◽  
Abdul Rahim Abdullah ◽  
Norhashimah Mohd Saad

Feature selection is a task of choosing the best combination of potential features that best describes the target concept during a classification process. However, selecting such relevant features becomes a difficult matter when large number of features are involved. Therefore, this study aims to solve the feature selection problem using binary particle swarm optimization (BPSO). Nevertheless, BPSO has limitations of premature convergence and the setting of inertia weight. Hence, a new co-evolution binary particle swarm optimization with a multiple inertia weight strategy (CBPSO-MIWS) is proposed in this work. The proposed method is validated with ten benchmark datasets from UCI machine learning repository. To examine the effectiveness of proposed method, four recent and popular feature selection methods namely BPSO, genetic algorithm (GA), binary gravitational search algorithm (BGSA) and competitive binary grey wolf optimizer (CBGWO) are used in a performance comparison. Our results show that CBPSO-MIWS can achieve competitive performance in feature selection, which is appropriate for application in engineering, rehabilitation and clinical areas.


Sign in / Sign up

Export Citation Format

Share Document