Global Optimization of Model Parameters from the 2-D Analytic Signal of Gravity and Magnetic Anomalies Over Geo-Bodies with Idealized Structure

Author(s):  
Sonam Trivedi ◽  
Prashant Kumar ◽  
Mahesh Prasad Parija ◽  
Arkoprovo Biswas
Geophysics ◽  
1978 ◽  
Vol 43 (3) ◽  
pp. 634-636 ◽  
Author(s):  
M. V. Ramanaiah Chowdary

A great deal of interest has been shown in the frequency analysis of gravity and magnetic data originally suggested by Dean (1958). The application of this method for potential field problems has met with considerable success. The purpose of this note is to show that the interpretation of total magnetic anomalies due to a sloping step model, which represents a contact between zones having different magnetic properties in terms of model parameters, is less complicated in the frequency domain than in the spatial domain.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Nicole Debeglia ◽  
Jacques Corpel

A new method has been developed for the automatic and general interpretation of gravity and magnetic data. This technique, based on the analysis of 3-D analytic signal derivatives, involves as few assumptions as possible on the magnetization or density properties and on the geometry of the structures. It is therefore particularly well suited to preliminary interpretation and model initialization. Processing the derivatives of the analytic signal amplitude, instead of the original analytic signal amplitude, gives a more efficient separation of anomalies caused by close structures. Moreover, gravity and magnetic data can be taken into account by the same procedure merely through using the gravity vertical gradient. The main advantage of derivatives, however, is that any source geometry can be considered as the sum of only two types of model: contact and thin‐dike models. In a first step, depths are estimated using a double interpretation of the analytic signal amplitude function for these two basic models. Second, the most suitable solution is defined at each estimation location through analysis of the vertical and horizontal gradients. Practical implementation of the method involves accurate frequency‐domain algorithms for computing derivatives with an automatic control of noise effects by appropriate filtering and upward continuation operations. Tests on theoretical magnetic fields give good depth evaluations for derivative orders ranging from 0 to 3. For actual magnetic data with borehole controls, the first and second derivatives seem to provide the most satisfactory depth estimations.


Geophysics ◽  
1977 ◽  
Vol 42 (3) ◽  
pp. 610-622 ◽  
Author(s):  
Chao C. Ku

A computational method, which combines the Gaussian quadrature formula for numerical integration and a cubic spline for interpolation in evaluating the limits of integration, is employed to compute directly the gravity and magnetic anomalies caused by 2-dimensional and 3-dimensional bodies of arbitrary shape and arbitrary magnetic polarization. The mathematics involved in this method is indeed old and well known. Furthermore, the physical concept of the Gaussian quadrature integration leads us back to the old concept of equivalent point masses or equivalent magnetic point dipoles: namely, the gravity or magnetic anomaly due to a body can be evaluated simply by a number of equivalent points which are distributed in the “Gaussian way” within the body. As an illustration, explicit formulas are given for dikes and prisms using 2 × 2 and 2 × 2 × 2 point Gaussian quadrature formulas. The basic limitation in the equivalent‐point method is that the distance between the point of observation and the equivalent points must be larger than the distance between the equivalent points within the body. By using a reasonable number of equivalent points or dividing the body into a number of smaller subbodies, the method might provide a useful alternative for computing in gravity and magnetic methods. The use of a simplified cubic spline enables us to compute the gravity and magnetic anomalies due to bodies of arbitrary shape and arbitrary magnetic polarization with ease and a certain degree of accuracy. This method also appears to be quite attractive for terrain corrections in gravity and possibly in magnetic surveys.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. J1-J13 ◽  
Author(s):  
Pauline Le Maire ◽  
Marc Munschy

The shape of an anomaly (magnetic or gravity) along a profile provides information on the geometry, horizontal location, depth, and magnetization of the source. For a 2D source, the horizontal location, depth, and geometry of a source are determined through the analysis of the curve of the analytic signal. However, the amplitude of the analytic signal is independent of the dips of the structure, the apparent inclination of magnetization, and the regional magnetic field. To better characterize the parameters of the source, we have developed a new approach for studying 2D potential field equations using complex algebra. Complex equations for different geometries of the sources are obtained for gravity and magnetic anomalies in the spatial and spectral domains. In the spatial domain, these new equations are compact and correspond to logarithmic or power functions with a negative integer exponent. We found that modifying the shape of the source changes the exponent of the power function, which is equivalent to differentiation or integration. We developed anomaly profiles using plots in the complex plane, which is called mapping. The obtained complex curves are loops passing through the origin of the plane. The shape of these loops depends only on the geometry and not on the horizontal location of the source. For source geometries defined by a single point, the loop shape is also independent of the source depth. The orientation of the curves in the complex plane is related to the order of differentiation or integration, the geometry and dips of the structures, and the apparent inclination of magnetization and of the regional magnetic field. The application of these equations and mapping on total field magnetic anomalies across a magmatic dike in Norway shows coherent results, allowing us to determine the geometry and the apparent inclination of magnetization.


Sign in / Sign up

Export Citation Format

Share Document