scholarly journals Interpretation of magnetic anomalies using the horizontal gradient analytic signal

2009 ◽  
Vol 44 (3) ◽  
Author(s):  
N. Bournas ◽  
H. A. Bake
Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 653-659 ◽  
Author(s):  
Walter R. Roest ◽  
Mark Pilkington

Remanent magnetization can have a significant influence on the shape of magnetic anomalies in areas that are generally characterized by induced magnetization. Since modeling of magnetic anomalies is nonunique, additional constraints on the direction of magnetization are useful. A method is proposed here to study the possible contribution of remanent magnetization to a particular anomaly, by comparing two functions that are calculated directly from the observations: (1) the amplitude of the analytic signal, and (2) the horizontal gradient of pseudogravity. From the amplitude and relative position of maxima in these derived quantities, we infer the deviation of the magnetization direction from that of the ambient field. The approach is applied to the magnetic anomaly in the center of the Manicouagan impact structure (Canada). Our results, based only on the magnetic anomaly observations, are in close agreement with constraints on the direction of remanent magnetization from rock samples.


Author(s):  
Pham Thanh Luan ◽  
Le Thi Sang ◽  
Vu Duc Minh ◽  
Ngo Thi To Nhu ◽  
Do Duc Thanh ◽  
...  

This paper presents a comparative study of effectiveness of edge detection methods such as total horizontal gradient, analytic signal amplitude, tilt angle, gradient amplitude of tilt angle, theta map, horizontal tilt angle, tilt angle of total horizontal gradient, tilt angle of analytic signal, improved theta map, and total horizontal gradient of improved tilt angle. The effectiveness of each method was estimated on synthetic magnetic data and synthetic gravity anomaly data with and without noise. The obtained results show that the tilt angle of gradient amplitude can detect all the edges more clearly and precisely. The applicability of each method is demonstrated on the aeromagnetic anomaly data from the Zhurihe region of Northeast China, and Bouguer gravity anomaly data from a region of North Vietnam. The results computed by the tilt angle of horizontal gradient were also in accord with the geologic structures of the areas.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. J1-J13 ◽  
Author(s):  
Pauline Le Maire ◽  
Marc Munschy

The shape of an anomaly (magnetic or gravity) along a profile provides information on the geometry, horizontal location, depth, and magnetization of the source. For a 2D source, the horizontal location, depth, and geometry of a source are determined through the analysis of the curve of the analytic signal. However, the amplitude of the analytic signal is independent of the dips of the structure, the apparent inclination of magnetization, and the regional magnetic field. To better characterize the parameters of the source, we have developed a new approach for studying 2D potential field equations using complex algebra. Complex equations for different geometries of the sources are obtained for gravity and magnetic anomalies in the spatial and spectral domains. In the spatial domain, these new equations are compact and correspond to logarithmic or power functions with a negative integer exponent. We found that modifying the shape of the source changes the exponent of the power function, which is equivalent to differentiation or integration. We developed anomaly profiles using plots in the complex plane, which is called mapping. The obtained complex curves are loops passing through the origin of the plane. The shape of these loops depends only on the geometry and not on the horizontal location of the source. For source geometries defined by a single point, the loop shape is also independent of the source depth. The orientation of the curves in the complex plane is related to the order of differentiation or integration, the geometry and dips of the structures, and the apparent inclination of magnetization and of the regional magnetic field. The application of these equations and mapping on total field magnetic anomalies across a magmatic dike in Norway shows coherent results, allowing us to determine the geometry and the apparent inclination of magnetization.


2012 ◽  
Vol 9 (4) ◽  
pp. 468-474 ◽  
Author(s):  
Guo-Qing Ma ◽  
Xiao-Juan Du ◽  
Li-Li Li ◽  
Ling-Shun Meng

Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. J33-J41 ◽  
Author(s):  
Francisco J. F. Ferreira ◽  
Jeferson de Souza ◽  
Alessandra de B. e S. Bongiolo ◽  
Luís G. de Castro

Magnetic anomaly maps reflect the spatial distribution of magnetic sources, which may be located at different depths and have significantly different physical and geometrical properties, complicating the identification of the corresponding geologic structures. Filtering techniques are frequently used to balance anomalies from shallow and deep sources, and to enhance certain features of interest, such as the edges of the causative bodies. Most methods used for enhancing magnetic data are based on vertical or horizontal derivatives of the magnetic anomalies or combinations of them, and the edges or centers of the sources are identified by maxima, minima, or null values in the transformed data. Normalized derivatives methods are used to equalize signals from sources buried at different depths. We present an edge detector method for the enhancement of magnetic anomalies, which is based on the tilt angle of the total horizontal gradient. The notable features of this method are that it produces amplitude maxima over the source edges and that it equalizes signals from shallow and deep sources. The method is applied to synthetic and real data. The effectiveness of the method is evaluated by comparing it with other edge detection methods that have been previously reported in the literature and that make use of derivatives. The results show that our method is less sensitive to variations in the depth of the sources and that it indicates the position of the edges of causative bodies in a more accurate fashion, when compared with previous methods, even for anomalies due to multiple interfering sources. These results demonstrate that the proposed method is a useful tool for the qualitative interpretation of magnetic data.


2017 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Adedibu Akingboye ◽  
Abimbola Ogunyele

Enhanced magnetic data reductions via the use of various forms of filters were employed for basement classification in parts of Ekiti State. The data reductions and enhancement involve: reduction to equator (RTE), regional and residual, automatic gain control (AGC), downward continuation, upward continuations (1, 2, and 3 km), analytic signal (AS) and horizontal gradient (HG) to map and delineate basement rocks and structures, while surface relief and spectral plot were used to determine depth to top of magnetic sources. The images revealed that the study area is characterized by different lithologies. The rocks evinced lineaments and faults trending NE-SW (G–G’, H–H’, J–J’, K–K’), NNE-SSW, E-W (minor) and approximately N-S, while the dykes are in NW-SE, NNW-SSW directions. The analytic signal (AS) and horizontal gradient (HG) revealed high amplitude reversed Z-like shape as migmatite rocks, differentiating them from the two flanks with low amplitude signals as schist and quartzite schist of Ijero and Aramoko and the granitic intrusive within these migmatised rocks around Ijan, Gbonyin and Ise/Otun. The shaded relief and the spectral plot showed that the total depth to top of magnetic sources ranged from 20m to 1.8km for shallower and deeper sources respectively.


2018 ◽  
Vol 36 (3) ◽  
pp. 1
Author(s):  
Fabrício Rodrigues Castro ◽  
Saulo Pomponet Oliveira ◽  
Jeferson de Souza ◽  
Francisco José Fonseca Ferreira

ABSTRACT. We extend the concept of two earlier enhancement techniques based on the local phase of the magnetic anomaly, namely the vertical (TDR) and horizontal (TDX) tilt angles, which are defined by the inverse tangent of ratios involving the total horizontal gradient and the vertical derivative. These filters are useful to locate both shallow and deep sources, because they equalize the signal amplitudes. The proposed approach is based on the addition and subtraction of TDR and TDX. The TDR+TDX filter produces constant values over the causative bodies, while TDR-TDX generates peaks over the center of bodies and is constant out of them. By applying the proposed techniques to synthetic and aeromagnetic data we show that they locate more clearly the centers and edges of the sources in comparison to TDR and TDX, respectively. The combined filters have essentially the same computational cost as TDR and TDX and can replace them as auxiliary interpretation tools.Keywords: Qualitative Methods, Local Phase Filters, Aeromagnetic Data.RESUMO. Estendemos o conceito de duas técnicas de realce baseadas na fase local da anomalia magnética: as inclinações do sinal analítico (TDR) e do gradiente horizontal total (TDX), definidos pelo arco tangente de razões envolvendo o gradiente horizontal total e a derivada vertical. Estes filtros são úteis para localizar tanto fontes rasas quanto profundas. O método proposto baseia-se na adição e subtração dos filtros TDR e TDX. O filtro TDR+TDX produz valores constantes sobre as fontes causadoras, enquanto que o TDR-TDX produz picos sobre o centro dos corpos e é constante onde fontes causadoras não são verificadas. Aplicando as técnicas propostas aos dados sintéticos e reais mostra-se que elas localizam mais claramente os centros e as bordas dos corpos em comparação com o TDR e o TDX, respectivamente. Os filtros combinados têm essencialmente o mesmo custo computacional dos filtros originais, TDR e TDX, e podem substituí-los como ferramentas de interpretação.Palavras-chave: Métodos Qualitativos, Filtros de Fase Local, Dados Aeromagnéticos. Federal


2019 ◽  
Vol 66 (1) ◽  
pp. 27-37
Author(s):  
A.A Alabi ◽  
V Makinde ◽  
A.O Adewale ◽  
J.O Coker ◽  
T.J Aluko

AbstractThe aeromagnetic data of Idogo, Southwestern Nigeria, have been used to study the lithology and to determine the magnetic source parameters within Idogo and its environs. Idogo lies between latitudes 6°30′N and 7°00′N and between longitudes 2°30′E and 3°00′E. The magnetic anomaly map, the regional geology, the analytic signal and the local wavenumber were used to identify the nature and depth of the magnetic sources in the region. Data enhancement was carried out to delineate the residual features relative to the strong regional gradients and intense anomalies due to the basin features. The estimated basement depth using the horizontal gradient method revealed depths ranging between 0.55 km and 2.49 km, while the analytic signal amplitude and local wavenumber methods estimated depth to the magnetic sources to range from 0.57 km to 4.22 km and 0.96 km to 2.43 km, respectively. Depth computations suggested the presence of both shallow and deep sources. The total magnetic intensity values ranged from 3.1 nT to 108.3 nT. The area shows magnetic closures of various sizes in different parts of the area trending West, with prominence at the centre and distributed East–West.


Sign in / Sign up

Export Citation Format

Share Document