scholarly journals Recognizing and Testing Isomorphism of Cayley Graphs over an Abelian Group of Order 4p in Polynomial Time

Author(s):  
Roman Nedela ◽  
Ilia Ponomarenko
10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


2000 ◽  
Vol 3 ◽  
pp. 96-116 ◽  
Author(s):  
Catherine Greenhill

AbstractThe exterior square of a multiset is a natural combinatorial construction which is related to the exterior square of a vector space. We consider multisets of elements of an abelian group. Two properties are defined which a multiset may satisfy: recognisability and involution-recognisability. A polynomial-time algorithm is described which takes an input multiset and returns either (a) a multiset which is either recognisable or involution-recognisable and whose exterior square equals the input multiset, or (b) the message that no such multiset exists. The proportion of multisets which are neither recognisable nor involution-recognisable is shown to be small when the abelian group is finite but large. Some further comments are made about the motivating case of multisets of eigenvalues of matrices.


2019 ◽  
Vol 30 (03) ◽  
pp. 607-623
Author(s):  
Attila Földvári ◽  
Gábor Horváth

We provide a polynomial time algorithm for deciding the equation solvability problem over finite groups that are semidirect products of a [Formula: see text]-group and an Abelian group. As a consequence, we obtain a polynomial time algorithm for deciding the equivalence problem over semidirect products of a finite nilpotent group and a finite Abelian group. The key ingredient of the proof is to represent group expressions using a special polycyclic presentation of these finite solvable groups.


10.37236/581 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

An undirected graph is called integral, if all of its eigenvalues are integers. Let $\Gamma =Z_{m_1}\otimes \ldots \otimes Z_{m_r}$ be an abelian group represented as the direct product of cyclic groups $Z_{m_i}$ of order $m_i$ such that all greatest common divisors $\gcd(m_i,m_j)\leq 2$ for $i\neq j$. We prove that a Cayley graph $Cay(\Gamma,S)$ over $\Gamma$ is integral, if and only if $S\subseteq \Gamma$ belongs to the the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. It is also shown that every $S\in B(\Gamma)$ can be characterized by greatest common divisors.


10.37236/2369 ◽  
2012 ◽  
Vol 19 (4) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

It is shown that distance powers of an integral Cayley graph over an abelian group $\Gamma$ are again integral Cayley graphs over $\Gamma$. Moreover, it is proved that distance matrices of integral Cayley graphs over abelian groups have integral spectrum.


2017 ◽  
Vol 24 (03) ◽  
pp. 467-480
Author(s):  
M.R. Darafsheh ◽  
M. Abdollahi

In this paper we determine all tetravalent Cayley graphs of a non-abelian group of order 3p2, where p is a prime number greater than 3, and with a cyclic Sylow p-subgroup. We show that all of these tetravalent Cayley graphs are normal. The full automorphism group of these Cayley graphs is given and the half-transitivity and the arc-transitivity of these graphs are investigated. We show that this group is a 5-CI-group.


2016 ◽  
Vol 26 (2) ◽  
pp. 248-266 ◽  
Author(s):  
BEN GREEN

Let G be an abelian group of cardinality n, where hcf(n, 6) = 1, and let A be a random subset of G. Form a graph ΓA on vertex set G by joining x to y if and only if x + y ∈ A. Then, with high probability as n → ∞, the chromatic number χ(ΓA) is at most $(1 + o(1))\tfrac{n}{2\log_2 n}$. This is asymptotically sharp when G = ℤ/nℤ, n prime.


10.37236/5240 ◽  
2016 ◽  
Vol 23 (3) ◽  
Author(s):  
István Estélyi ◽  
Tomaž Pisanski

For a finite group $G$ and subset $S$ of $G,$ the Haar graph $H(G,S)$ is a bipartite regular graph, defined as a regular $G$-cover of a dipole with $|S|$ parallel arcs labelled by elements of $S$. If $G$ is an abelian group, then $H(G,S)$ is well-known to be a Cayley graph; however, there are examples of non-abelian groups $G$ and subsets $S$ when this is not the case. In this paper we address the problem of classifying finite non-abelian groups $G$ with the property that every Haar graph $H(G,S)$ is a Cayley graph. An equivalent condition for $H(G,S)$ to be a Cayley graph of a group containing $G$ is derived in terms of $G, S$ and $\mathrm{Aut } G$. It is also shown that the dihedral groups, which are solutions to the above problem, are $\mathbb{Z}_2^2,D_3,D_4$ and $D_{5}$. 


Sign in / Sign up

Export Citation Format

Share Document