Image Registration Using Single Swarm PSO with Refined Search Space Exploration

Author(s):  
P. N. Maddaiah ◽  
P. N. Pournami
2011 ◽  
Vol 24 (1) ◽  
pp. 1 ◽  
Author(s):  
Xiaoxiang Wang ◽  
Jie Tian

Herein one proposes a mutual information-based registration method using pixel gradient information rather than pixel intensity information. Special care is paid to finding the global maximum of the registration function. In particular, one uses simulated annealing method speeded up by including a statistical analysis to reduce the next search space across the cooling schedule. An additional speed up is obtained by combining this numerical strategy with hill-climbing method. Experimental results obtained on a limited database of biological images illustrate that the proposed method for image registration is relatively fast, and performs well as the overlap between the floating and reference images is decreased and/or the image resolution is coarsened.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Henryk Josiński ◽  
Daniel Kostrzewa ◽  
Agnieszka Michalczuk ◽  
Adam Świtoński

This paper introduces an expanded version of the Invasive Weed Optimization algorithm (exIWO) distinguished by the hybrid strategy of the search space exploration proposed by the authors. The algorithm is evaluated by solving three well-known optimization problems: minimization of numerical functions, feature selection, and the Mona Lisa TSP Challenge as one of the instances of the traveling salesman problem. The achieved results are compared with analogous outcomes produced by other optimization methods reported in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Wu Zhou ◽  
Lijuan Zhang ◽  
Yaoqin Xie ◽  
Changhong Liang

Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.


Author(s):  
Corinna Königseder ◽  
Kristina Shea

Design grammars have been successfully applied in numerous engineering disciplines, e.g. in electrical engineering, architecture and mechanical engineering. A successful application of design grammars in Computational Design Synthesis (CDS) requires a) a meaningful representation of designs and the design task at hand, b) a careful formulation of grammar rules to synthesize new designs, c) problem specific design evaluations, and d) the selection of an appropriate algorithm to guide the synthesis process. Managing these different aspects of CDS requires not only a detailed understanding of each individual part, but also of the interdependencies between them. In this paper, a new method is presented to analyze the exploration of design spaces in CDS. The method analyzes the designs generated during the synthesis process and visualizes how the design space is explored with respect to a) design characteristics, and b) objectives. The selected algorithm as well as the grammar rules can be analyzed with this approach to support the human designer in successfully understanding and applying a CDS method. The case study demonstrates how the method is used to analyze the synthesis of bicycle frames. Two algorithms are compared for this task. Results demonstrate how the method increases the understanding of the different components in CDS. The presented research can be useful for both novices to CDS to help them gain a deeper understanding of the interplay between grammar rules and guidance of the synthesis process, as well as for experts aiming to further improve their CDS application by improving parameter settings of their search algorithms, or by further refining their design grammar. Additionally, the presented method constitutes a novel approach to interactively visualize design space exploration considering not only designs objectives, but also the characteristics and interdependencies of different designs.


Sign in / Sign up

Export Citation Format

Share Document