Static Force Analysis of a Finger Mechanism for a Versatile Gripper

Author(s):  
Ivan I. Borisov ◽  
Sergey A. Kolyubin ◽  
Alexey A. Bobtsov
Keyword(s):  
1994 ◽  
Vol 116 (2) ◽  
pp. 614-621 ◽  
Author(s):  
Yong-Xian Xu ◽  
D. Kohli ◽  
Tzu-Chen Weng

A general formulation for the differential kinematics of hybrid-chain manipulators is developed based on transformation matrices. This formulation leads to velocity and acceleration analyses, as well as to the formation of Jacobians for singularity and unstable configuration analyses. A manipulator consisting of n nonsymmetrical subchains with an arbitrary arrangement of actuators in the subchain is called a hybrid-chain manipulator in this paper. The Jacobian of the manipulator (called here the system Jacobian) is a product of two matrices, namely the Jacobian of a leg and a matrix M containing the inverse of a matrix Dk, called the Jacobian of direct kinematics. The system Jacobian is singular when a leg Jacobian is singular; the resulting singularity is called the inverse kinematic singularity and it occurs at the boundary of inverse kinematic solutions. When the Dk matrix is singular, the M matrix and the system Jacobian do not exist. The singularity due to the singularity of the Dk matrix is the direct kinematic singularity and it provides positions where the manipulator as a whole loses at least one degree of freedom. Here the inputs to the manipulator become dependent on each other and are locked. While at these positions, the platform gains at least one degree of freedom, and becomes statically unstable. The system Jacobian may be used in the static force analysis. A stability index, defined in terms of the condition number of the Dk matrix, is proposed for evaluating the proximity of the configuration to the unstable configuration. Several illustrative numerical examples are presented.


2014 ◽  
Vol 513-517 ◽  
pp. 2625-2628
Author(s):  
Xu Lei Deng ◽  
Jia Ning He ◽  
Chao Zhang

Study on a steel chimney outer wall with three spiral guide plates in this paper. Research the steel chimney structure stability and static force analysis under wind loads by using ANSYS Workbench and CFX fluid mechanics modular. To prove the steel chimney with three spiral guide plates structure is more safe and stable than the old steel chimney. Provides a new transformation basis of the steel chimney as the ratio of height to diameter is large and low flexural strength.


2015 ◽  
Vol 5 (6) ◽  
pp. 493-498
Author(s):  
Yanfeng Li ◽  
Ning Wang ◽  
Yongjin Lu ◽  
Pan Zeng ◽  
Xianglong Zeng ◽  
...  

2010 ◽  
Vol 37-38 ◽  
pp. 608-613
Author(s):  
Jian Yu Bai ◽  
Senlin Tong ◽  
Zai He Yu ◽  
Di Zheng

It is frequently reported by customers that the lower-left and lower-right wheels in the load fork mechanism of a kind of forward-type stacker designed based on static strength analysis are abraded faster than expected. In this paper, we studied by means of kinetics analysis and simulations the forces applied on parts of the fork mechanism. The simulation results show that the maximum values of instantaneous forces during operations are much higher than those derived based static force analysis, and thus explained the reason of the above-mentioned abnormal abrasion. The results also mean that static force analysis is not suitable for part strength design. Instead, one shall adopt kinetics analysis to explore the instantaneous forces in design.


Robotica ◽  
2010 ◽  
Vol 29 (4) ◽  
pp. 607-617 ◽  
Author(s):  
Derek McColl ◽  
Leila Notash

SUMMARYIn this paper, a generalized form of the antipodal method from multi-finger grasping is presented and implemented for investigating the workspace of a wide range of planar wire-actuated parallel manipulators. Manipulators with distinct wire attachment points on the base and mobile platform are considered, in the absence and presence of external force. The examined workspaces are verified with the corresponding workspaces developed using static force analysis. By applying an external force, modeled as a wire for the antipodal method, the characteristics of the manipulator could be altered by enlarging its workspace in the direction of the applied force.


Author(s):  
Yong-Xian Xu ◽  
Dilip Kohli ◽  
Tzu-Chen Weng

Abstract A general formulation for the differential kinematics of hybrid-chain manipulators is developed based on transformation matrices. This formulations leads to velocity and acceleration analyses, as well as to the formation of Jacobians for singularity and unstable configuration analyses. A manipulator consisting of n nonsymmetrical subchains with an arbitrary arrangement of actuators in the subchain is called a hybrid-chain manipulator in this paper. The Jacobian of the manipulator (called here the system Jacobian) is a product of two matrices, namely the Jacobian of a leg and a matrix M containing the inverse of a matrix Dk, called the Jacobian of direct kinematics. The system Jacobian is singular when a leg Jacobian is singular; the resulting singularity is called the inverse kinematic singularity and it occurs at the boundary of inverse kinematic solutions. When the Dk matrix is singular, the M matrix and the system Jacobian do not exist. The singularity due to the singularity of the Dk matrix is the direct kinematic singularity and it provides positions where the manipulator as a whole loses at least one degree of freedom. Here the inputs to the manipulator become dependent on each other and are locked. While at these positions, the platform gains at least one degree of freedom, and becomes statically unstable. The system Jacobian may be used in the static force analysis. A stability index, defined in terms of the condition number of the Dk matrix, is proposed for evaluating the proximity of the configuration to the unstable configuration. Several illustrative numerical examples are presented.


Author(s):  
Ying Zhang ◽  
Qizheng Liao ◽  
Shimin Wei ◽  
Feng Wei ◽  
Duanling Li

In this paper, we present a new algebraic elimination algorithm for the inverse static force analysis of a special planar three-spring system. The system consists of three linear springs joined to the ground at the two fixed pivots and connected to the two moving pivots at the platform. When exerted by specified static force, the goal of inverse static analysis is to determine all the equilibrium configurations. First of all, a system of seven polynomial equations in seven variables is established based on the geometric constraint and static force balancing. Then, four basic constraint equations in four variables are obtained by variable substitution. Next, a 20 by 20 resultant matrix is reduced by means of three consecutive Sylvester elimination process. Finally, a 54th-degree univariate polynomial equation is directly derived without extraneous roots in the computer algebra system Mathematica 9.0. At last, a numerical example is given to verify the elimination procedure.


Sign in / Sign up

Export Citation Format

Share Document