molar distalization
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 43)

H-INDEX

23
(FIVE YEARS 1)

2022 ◽  
Vol 11 ◽  
pp. 317-324
Author(s):  
Purva Verma ◽  
Ashwin Mathew George

Objectives: The aim of this review is to systematically analyze the efficacy of molar distalization using clear aligners in non-growing Class II patients. Materials and Methods: A complete search across the electronic database through PubMed, Cochrane, Google scholar, LILACS, and manual search of orthodontic journals were done till 2019. Studies were selected on the basis of PRISMA guidelines. Results: A total of four articles were included in this review. The amount of molar distalization reported was 2–3 mm. Conclusion: Out of the four studies included. In all the studies a significant amount of distalization was reported. Three retrospective studies concluded that distalization with aligners is the most effective of all tooth movements. One study concluded that aligners effectively achieved distalization with an efficacy of 87%, other two studies concluded that aligners effectively distalized the molars with good control over vertical dimension and mesiodistal tipping.


2022 ◽  
pp. 100604
Author(s):  
Anna Auladell ◽  
Fernando De La Iglesia ◽  
Oriol Quevedo ◽  
Andre Walter ◽  
Andreu Puigdollers

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Cengiz Ayidağa ◽  
Beste Kamiloğlu

The objective of the present study is to describe the stress and displacement patterns created by clear aligners and composite attachments bonded with the acid-etch technique on the labial surface of the maxillary first upper molar during its distalization. Maxillary molar distalization is a clinical orthodontics procedure used to move the first maxillary molar distally. The procedure is useful in patients with some Class II malocclusion allowing the first molar to move into a Class I relationship and the correction of associated malocclusion features. Three finite element models were designed to simulate the alveolar bone, molar tooth, periodontal ligament, aligner, and composite attachments. The first model had no composite attachment, the second model had a vertical rectangular attachment, and the third model had a newly designed attachment. A loading method was developed that mimicked the aligner’s molar distal movement. PDL was set as a viscoelastic material with a nonlinear mechanical response. von Mises and maximum principal stresses and tooth displacement patterns were analyzed using dedicated software. All the configurations showed some form of clockwise rotation in addition to the distal movement. The crown portion of the tooth showed maximum displacement in all three models; however, in the absence of attachment, the root apex moved in the opposite direction which was compatible with uncontrolled tipping movement. Simulations with attachments exhibited the best performance regarding the movement patterns. The third group, with the newly designed attachment, exhibited the best performance concerning stress distribution (principal stress and von Mises stresses) and higher stresses in the periodontal ligament and tooth. Incorporating a vertical rectangular attachment in a clear aligner resulted in the reduction of mesiodistal tipping tendency during molar distalization. The third model was the most efficient considering both displacement pattern and stress distribution. The level of stress generated by the third model needs to be further investigated in future studies.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kamontip Sujaritwanid ◽  
Boonsiva Suzuki ◽  
Eduardo Yugo Suzuki

Abstract Background The purpose of this study was to compare the stress distribution and displacement patterns of the one versus two maxillary molars distalization with iPanda and to evaluate the biomechanical effect of distalization on the iPanda using the finite element method. Methods The finite element models of a maxillary arch with complete dentition, periodontal ligament, palatal and alveolar bone, and an iPanda connected to a pair of midpalatal miniscrews were created. Two models were created to simulate maxillary molar distalization. In the first model, the iPanda was connected to the second molar to simulate a single molar distalization. In the second model, the iPanda was connected to the first molar to simulate “en-masse” first and second molar distalization. A varying force from 50 to 200 g was applied. The stress distribution and displacement patterns were analyzed. Results For one molar, the stress was concentrated at the furcation and along the distal surface in all roots with a large amount of distalization and distobuccal crown tipping. For two molars, the stress in the first molar was 10 times higher than in the second molar with a great tendency for buccal tipping and a minimal amount of distalization. Moreover, the stress concentration on the distal miniscrew was six times higher than in the mesial miniscrew with an extrusive and intrusive vector, respectively. Conclusions Individual molar distalization provides the most effective stress distribution and displacement patterns with reduced force levels. In contrast, the en-masse distalization of two molars results in increased force levels with undesirable effects in the transverse and vertical direction.


2021 ◽  
pp. 030157422110054
Author(s):  
Shweta Nagesh ◽  
M Aravind ◽  
Amit Rekhawat

This article describes the use of a computer-aided design and manufacturing (CAD/CAM) 3D metal printed adjunctive orthodontic appliance that can be used with palatal miniscrews for molar distalization. CAD/CAM technology was used to fabricate a customized framework for bone-anchored pendulum appliance effectively based on the patient’s palatal contour, location, and the number of implants to be placed.


Sign in / Sign up

Export Citation Format

Share Document