Using Convolutional Neural Network in Cross-Domain Argumentation Mining Framework

Author(s):  
Rihab Bouslama ◽  
Raouia Ayachi ◽  
Nahla Ben Amor
2022 ◽  
pp. 155-170
Author(s):  
Lap-Kei Lee ◽  
Kwok Tai Chui ◽  
Jingjing Wang ◽  
Yin-Chun Fung ◽  
Zhanhui Tan

The dependence on Internet in our daily life is ever-growing, which provides opportunity to discover valuable and subjective information using advanced techniques such as natural language processing and artificial intelligence. In this chapter, the research focus is a convolutional neural network for three-class (positive, neutral, and negative) cross-domain sentiment analysis. The model is enhanced in two-fold. First, a similarity label method facilitates the management between the source and target domains to generate more labelled data. Second, term frequency-inverse document frequency (TF-IDF) and latent semantic indexing (LSI) are employed to compute the similarity between source and target domains. Performance evaluation is conducted using three datasets, beauty reviews, toys reviews, and phone reviews. The proposed method enhances the accuracy by 4.3-7.6% and reduces the training time by 50%. The limitations of the research work have been discussed, which serve as the rationales of future research directions.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 121584-121595
Author(s):  
Shichao Jiao ◽  
Xie Han ◽  
Fengguang Xiong ◽  
Fusheng Sun ◽  
Rong Zhao ◽  
...  

Information ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 162 ◽  
Author(s):  
Jiana Meng ◽  
Yingchun Long ◽  
Yuhai Yu ◽  
Dandan Zhao ◽  
Shuang Liu

Transfer learning is one of the popular methods for solving the problem that the models built on the source domain cannot be directly applied to the target domain in the cross-domain sentiment classification. This paper proposes a transfer learning method based on the multi-layer convolutional neural network (CNN). Interestingly, we construct a convolutional neural network model to extract features from the source domain and share the weights in the convolutional layer and the pooling layer between the source and target domain samples. Next, we fine-tune the weights in the last layer, named the fully connected layer, and transfer the models from the source domain to the target domain. Comparing with the classical transfer learning methods, the method proposed in this paper does not need to retrain the network for the target domain. The experimental evaluation of the cross-domain data set shows that the proposed method achieves a relatively good performance.


Author(s):  
Guohui Zhang ◽  
Gaoyuan Liang ◽  
Fang Su ◽  
Fanxin Qu ◽  
Jing-Yan Wang

2019 ◽  
Vol 18 (05) ◽  
pp. 1469-1499 ◽  
Author(s):  
Paola Zola ◽  
Paulo Cortez ◽  
Costantino Ragno ◽  
Eugenio Brentari

Due to the expansion of Internet and Web 2.0 phenomenon, there is a growing interest in sentiment analysis of freely opinionated text. In this paper, we propose a novel cross-source cross-domain sentiment classification, in which cross-domain-labeled Web sources (Amazon and Tripadvisor) are used to train supervised learning models (including two deep learning algorithms) that are tested on typically nonlabeled social media reviews (Facebook and Twitter). We explored a three-step methodology, in which distinct balanced training, text preprocessing and machine learning methods were tested, using two languages: English and Italian. The best results were achieved using undersampling training and a Convolutional Neural Network. Interesting cross-source classification performances were achieved, in particular when using Amazon and Tripadvisor reviews to train a model that is tested on Facebook data for both English and Italian.


Sign in / Sign up

Export Citation Format

Share Document