Social Influence Prediction by a Community-Based Convolutional Neural Network

Author(s):  
Shao Hsuan Tai ◽  
Hao-Shang Ma ◽  
Jen-Wei Huang
2018 ◽  
Vol 10 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Rizqa Raaiqa Bintana ◽  
Chastine Fatichah ◽  
Diana Purwitasari

Community-based question answering (CQA) is formed to help people who search information that they need through a community. One condition that may occurs in CQA is when people cannot obtain the information that they need, thus they will post a new question. This condition can cause CQA archive increased because of duplicated questions. Therefore, it becomes important problems to find semantically similar questions from CQA archive towards a new question. In this study, we use convolutional neural network methods for semantic modeling of sentence to obtain words that they represent the content of documents and new question. The result for the process of finding the same question semantically to a new question (query) from the question-answer documents archive using the convolutional neural network method, obtained the mean average precision value is 0,422. Whereas by using vector space model, as a comparison, obtained mean average precision value is 0,282. Index Terms—community-based question answering, convolutional neural network, question retrieval


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2018 ◽  
Vol 2018 (9) ◽  
pp. 202-1-202-6 ◽  
Author(s):  
Edward T. Scott ◽  
Sheila S. Hemami

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2018 ◽  
Vol 2018 (10) ◽  
pp. 338-1-338-6
Author(s):  
Patrick Martell ◽  
Vijayan Asari

Author(s):  
Yao Yang ◽  
Yuanjiang Hu ◽  
Lingling Chen ◽  
Xiaoman Liu ◽  
Na Qin ◽  
...  

Author(s):  
Haitao Ma ◽  
Shihong Yue ◽  
Jian Lu ◽  
Sidolla Yem ◽  
Huaxiang Wang

Sign in / Sign up

Export Citation Format

Share Document